
Institutionen f�or informationsteknologi

Fractal Image Compression

Fredrik Lind�en, Emil S�odergren

Project in Computational Science: Report

December 2011

P
R
O
J
E
C
T
R
E
P
O
R
T

Inneh̊all

1 Introduction 2

2 Theory 2
2.1 Fractals . 2
2.2 Box counting . 3
2.3 Lacunarity . 3

3 Problem description 4

4 Method of Compression 5

5 Methods of Recreation 5
5.1 The Brute Force Algorithm . 6
5.2 Semi-Randomized Algorithm . 6
5.3 The Snake Algorithm . 6

6 Results 7

7 Discussion 11

References 12

A Compression algorithm 13

B Recreation with Semi-Randomized
Algorithm 15

C Recreation with Snake Algorithm 16

1

1 Introduction

In nature, many of the complex structures found can in a relatively simple way be descri-
bed with a branch of mathematics called fractals. Fractals can be described as a self-
repeating pattern that enlarges the structure by adding on smaller and smaller pieces of
it self. One can think of this as a tree that shoots out small trees (branches) from the
trunk which, in turn splits in to even smaller branches, building up the crown of the tree.
The same pattern can be seen on cauliflowers where the big cauliflower head is built up
by small parts that look exactly like the big head except, of course, the fact that they
are smaller.

From a mathematical point of view the fractals are built up upon a few, very simple rules.
The rules are then applied and reapplied to the set until the required level of refinement
is reached.

Figur 1.1: A tree shape created by using fractal rules, image from [2]

2 Theory

2.1 Fractals

To understand how fractals are built up it is useful to study one of the simplest fractals,
the Sierpinski triangle. The method to create it can be formulated in different ways but
in this report we use the shrinking method. We start with an equilateral triangle. In the
first step we shrink the triangle to half its size in both height and width. Now we copy
our small triangle three times and place these in our old triangle, letting each triangle

2

have two corners touching the others. The resulting figure will be of equal size as the
first triangle but with a hole in the middle. Now we just repeat the shrinking and the
multiplying for our new triangles. Figure 2.1 shows how the evolution of the Sierpinsky
triangle looks for the four first steps.

Figur 2.1: The evolution of the Sierpinsky triangle, image from [3]

It is easy to see that this shrinking can be continued infinitely many times and if you
zoom in on any smaller triangle, the pattern will be exactly the same. This is one of
the fundamental properties of fractals, the fact that they mimic themselves on multiple
levels.

Levels is an important concept and defines the amount of detail in an image. If we
consider the rightmost triangle in Figure 2.1 as the original image, the four triangles to
the left of it can be interpreted as the same image seen in higher levels. The level will
then be some kind of detail filter.

2.2 Box counting

To classify fractals one needs some algorithms to extract interesting properties of them.
Box counting is one of these algorithms. The idea is to count how many are the boxes
that are filled in an image. If we consider an image similar to the one shown in Figure 2.2
we see that there are 8 pixels that are filled. In this case we see the black ones as filled.
The algorithm can also be used in a higher level, meaning that we instead of looking at
pixels, we can consider blocks of pixels. By choosing the mask as a block of 2-by-2 pixels
one can see that this box count gives us 3 (the top left box is empty but the other three
contain at least one filled pixel each). By choosing to view the image with a mask bigger
than one pixel we can get a feeling for how scattered the pixels are in the image. In this
case we know that the 8 pixels are appearing in only three of the four 2-by-2 blocks.

2.3 Lacunarity

The concept of lacunarity was first introduced by Benôıt Mandelbrot in 1983. The word
comes from the latin word lacuna which means gap. As the name suggest, the lacunarity
measures how sparse an image is. Therefore, an image that is very dense gets a low
lacunarity value while a sparse image get a high value. To calculate the lacunarity one
uses the formula

L = N ·
∑N

i=0 s2
i ni(∑N

i=0 sini

)2 , (2.1)

where s is the number of states that can occur with a specific mask. States can easiest
be explained by looking at the image shown in Figure 2.2. If a mask that is the same

3

Figur 2.2: By counting the number of filled boxes in an image one can extract the box
count. In this case, the black boxes are considered to be filled and thus, the boxcount is
8.

size as the image is used we get a vector s = 0,1,2...,16 which contains all the 17 possible
states, 0 corresponding no pixels filled and 16 to all pixels filled. If we instead choose a
smaller mask, e.g. 3-by-3 pixels, as shown in Figure 2.3 the vector s is a vector with 10
values s = 0,1,2, ...,9. The index i specifies which element in s to use in the sum.

The variable N is the amount of different ways of placing the mask over the image. For
the example above with a 4-by-4 image and a 4-by-4 mask N = 1. If we instead, as in
Figure 2.3, choose a 3-by-3 mask, this will result in N = 4.

Finally, the variable n is a vector of the same length as s. The values in n shows how
many times a certain state, s, appears. In Figure 2.3 one gets a vector n where the fourth
element n4 = 2 because in the two first images the mask contains four pixels. The fifth
element n5 = 1 because one of the masks contain 5 pixels and the sixth element n6 = 1.
All the other elements in n are zero. One can see that the sum of all elements in n is
exactly N . This is always the case. [1]

By storing the different lacunarities for different levels and different mask sizes one achi-
eves what we in this report refer to as a lacunarity matrix. We limit ourselves to masks
that are an even power of 2. The lacunarity matrix, which contains the lacunarity value
for different mask sizes on different image levels, is then a lower-triangular square matrix.
The first row contains one value in the first column which is the lacunarity for the 2-by-2
level of the image with a 1-by-1 mask. Next row is for the 4-by-4 level of the image and
in this row the first and second column contain the lacunarity counted with the 2-by-2
mask and the 1-by-1 mask, respectively.

3 Problem description

For this project the task was to investigate different methods of recreating a binary image
showing subterranean cracks by using box counting and lacunarity. The easy part was to
calculate these properties from the original image. After that we worked on the harder
part of recreate the image using these values. For this we used different approaches with
varying success.

4

Figur 2.3: Shows how the lacunarity is calculated, here with a mask size of 3 by 3 pixels.

4 Method of Compression

To calculate the lacunarity and box count we use the algorithms described above. We
calculate both properties for all possible levels in the image. That means that a 32-by-32
pixel image obtain 5 values for box count and the lacunarity is a sub triangular 5-by
5-matrix. The function also returns the masks, corresponding to the different levels and
the frame of the image which contains the coordinates for all the pixels set to 1 on the
boarder of the image. The latter is only used by the Snake Algorithm, to be defined later.
The code can be found in Appendix A.

5 Methods of Recreation

In this section we explain how our different recreation methods work. The three methods
we have developed in the process of recreating the image are the ”Brute Force Algorithm”,
the ”Semi-Randomized Algorithm” and the ”Snake Algorithm”.

The first one, as indicated by its name, is a very time and memory consuming method,
where one inserts pixels, computes the lacunarity and compare it with the lacunarity of
the original image. If the lacunarity differs, one discards the image and inserts new pixels
and recomputes again.

The ”Semi-Randomized Algorithm” starts with an empty image and inserts random
pixels one by one. After each insertion the lacunarity is computed and if the lacunarity
improves, i.e. comes closer to the value of the original image, the pixel is stored as one.

5

This is repeated until the value for box count is fulfilled. If the lacunarity becomes worse,
the pixel is set to zero.

Finally, the ”Snake Algorithm” starts from a set number of points (in our simulation
we use the points where the cracks touch the image edge). From these points we let the
cracks ”crawl” into the image like snakes. The cracks stop if they collide with each other
or the image edge and new cracks are created if the number of set boxes is less than the
original box count.

5.1 The Brute Force Algorithm

The box count gives us the right number of filled element in our image for each level, if
we combine this knowledge, we can create smaller matrices with right number of filled
element. Once we have done this, we place these smaller matrices in a random order and
compute the lacunarity for the total image. If the lacunarity is not good enough we change
places with the matrices. If the lacunarity is still not good enough, we rotate each matrix.
This, however is a brute force method and becomes extremely computationally expensive
Also, in a certain image level we can have several images with the same lacunarity and
box count that look very different.

If a wrong image is acquired, this can not be discovered until one looks in the next
level (or levels). This makes the method even more expensive because it is possible that
one has to backtrack the solution to earlier levels. This can be helped by using a very
extensive lacunarity matrix to store the lacunarity for all possible masks. This, however,
will make the lacunarity matrix contain more data than it’s needed to store the image
itself, which contradicts with the purpose of the method.

5.2 Semi-Randomized Algorithm

A slightly more promising approach is the Semi-Randomized Algorithm. The idea is to
randomize pixels into the image at different levels. By doing this in a way that improves
the lacunarity in each step, the idea is that the resulting image should be fairly similar to
the original. The program randomizes a pixel somewhere in an empty image, calculates
the lacunarity for that image and compares it with the original. If the lacunarity gets
better than the last value, we keep the pixel. If not, it is set to zero. The image is recreated
from the top level (4 boxes) and from there it expands the image down to the pixel level.

The code for this algorithm can be found in Appendix B.

5.3 The Snake Algorithm

This method resembles the semi-randomized algorithm. The difference is that we now
utilize that cracks are continuous and when we randomize new points in the image we do
it so they connect to the previous points. Also, we use the observation that cracks often
are straight lines and therefore there is a larger probability that they proceed in a straight
line. As the name of the algorithm suggests, we see the cracks as snakes crawling into the
image. There is a certain probability in every step for the snakes to change direction. We
believe that this probability can be connected with the lacunarity of the original image

6

in some way. In the current implementation however, the chance of direction change is a
fixed percent. The cracks grow until the number of pixels match the previously calculated
box count or until they collide with each other or the image edge. If all cracks collide
and the number of set pixels is less than the target box count, a new snake is started
randomly from the tail of a random snake. Snakes, that are created and instantly collide,
are neglected. The code for this algorithm can be found in Appendix C.

6 Results

The first algorithm became too expensive to be sufficiently validated. Therefore, we do
not have any runs of it. We conclude that the method is not very good nor interesting
enough to spend time on.

The semi-randomized algorithm gives an image that appear to be very random and there
is no visual resemblance with the original image. The recreated image in Figure 6.2
has the same box count and the lacunarity differs only in the second decimal to the
original shown in Figure 6.1. Yet, the images are very very different. This suggests that
the method is not very stable and will probably not produce any usable results with a
reasonable amount of input data.

For our last algorithm the results are much more promising. When we ran the program
for the image in Figure 6.3 we got the resulting image shown in Figure 6.4. The result
looks really close to the original but the fact is that Figure 6.4 was the best of 20-30
runs. The best image is picked out by the program. It compares the lacunarity of the
recreated images with the correct lacunarity values. The closest one is shown to the user.
Since the snakes change direction with a certain, relatively low probability, many of the
images looked more like the one in Figure 6.6.

Figur 6.1: The original image. Figur 6.2: The recreated image.

7

Figur 6.3: The original image. Figur 6.4: The recreated image.

Figur 6.5: The original image. Figur 6.6: The recreated image.

Figur 6.7: The original image. Figur 6.8: The recreated image.

By just looking at the images in Figures 6.11 and 6.9, and their recreated counter parts,

8

Figur 6.9: The original image. Figur 6.10: The recreated image.

Figur 6.11: The original image. Figur 6.12: The recreated image.

Tabell 1: The difference in lacunarity between the images in 6.11 and 6.12. Negative
values correspond to a higher value in the recreated image. The rows in the table are the
different levels going from 2-by-2 down to 128-by-128. The columns indicate the mask
size going from 1-by-1 (leftmost column) to 64-by-64 (rightmost column).

0 0 0 0 0 0 0
0.1026 0.0199 0 0 0 0 0

0 0.1779 0.0331 0 0 0 0
0 0.1101 0.2429 0.0293 0 0 0

-0.2844 -0.0181 0.1633 0.2409 0.0147 0 0
-1.3190 -0.2506 -0.0338 0.1488 0.2231 0.0019 0

0 -0.4501 -0.1562 0.0186 0.2127 0.2409 0.0029

one does not see many similarities but as can be seen in Table 1 the difference in lacunarity
is low in all levels. The box count is also very similar as one can see in Table 2. However,
the original image is very complicated and hopefully cracks in the real world does not
behave this way.

9

Tabell 2: Box count for the original image 6.11 and the recreated image 6.12 and also
the difference between them.

level original recreated difference
2x2 4 4 0
4x4 12 13 -1
8x8 32 32 0
16x16 72 72 0
32x32 150 144 6
64x64 279 256 23
128x128 471 471 0

Tabell 3: The compression for images of sizes 4 by 4 to 1024 by 1024. The second, third
and fourth columns are given in bytes of data required for storage.

Image size Full image Best comp Worst comp Best % Worst %
4x4 64 24 48 62.5 25.0
8x8 256 40 96 84.4 62.5

16x16 1024 60 148 94.1 85.6
32x32 4096 84 204 98.0 95.0
64x64 16384 112 264 99.3 98.4

128x128 65536 144 328 99.8 99.5
256x256 262144 180 396 99.9 99.9
512x512 1048576 220 468 ¿99.9 ¿99.9

1024x1024 4194304 264 544 ¿99.9 ¿99.9

The Figure 6.10 is recreated from image 6.9. It is the best produced image out of 2000
different simulations. Allthough the visual appearance is not very similar, the lacunarity
and box count are.

To calculate the actual compression we use the formula (6.1). In this example we consider
the original image and the compression data to be stored in equally sized format e.g. 4
byte floats. The variable N is the number of levels we use in the image i.e. for a 64-by-64
image there would be six levels, 128-by-128 gives seven levels, and so on. The parameter
s is the number of starting points. It is multiplied by 2 to account for the fact that each
point is a coordinate in a 2D matrix.

(2N)2∑N
n=1 n + 2s− 1

(6.1)

If we use this formula we get a compression shown in Table 3. The third column shows
the best case scenario where there is only one starting point and the fourth column shows
the worst case scenario where we store maximum amounts of starting points. This case
can also be interpreted as a case where we store more points than just the starting points.
Maybe in a future development one can store intermediate points to help the snakes find
the right path.

10

7 Discussion

For the Semi-Randomized Algorithm we use a comparison with the lacunarity of the
original picture for every inserted pixel. This comparison is done by calculating the
sum of all the lacunarity values for all masks at the current level. This number is then
compared with the previously calculated lacunarity for the original image. For the first
steps, when the recreated image contains only a few pixels this method is not very good
since every pixel makes an improvement to the overall lacunarity no matter where it is
placed. This is a very unrefined way to do it and there are probably much better ways of
determining whether the lacunarity improves with an added pixel in the early stages of
recreation. But, even with this extension we feel like the method has more disadvantages
than advantages.

For the snake algorithm there are several aspects that could be improved. As it is now,
the only place a crack can start from is the edge of the image. This is of course easy
to change but one have to take care so that one defines each crack only once. We have
not made any attempt to define endpoints for the snakes but that would be a logical
extension to the code. Also if there are cracks that join or split in the original image
these points could be stored to help in the recreation process.

The algorithm extends the snakes cyclic which means that all snakes will have almost
the same length in the recreated image. That means that short cracks will tend to be
larger than the originals and vice versa. This could be helped by introducing endpoints
or give the length of each crack as input to the recreation algorithm.

With a better knowledge about seismology and theoretical models of how the bedrock
behaves, one can improve the behaviour of the evolving snakes. Especially, the part about
directional changes and the likelihood of two cracks joining each other if they get close.

From the start we give our snakes a direction perpendicular to the edge it starts from.
This condition can be problematic in some cases. As we can see in Figure 6.8, all snakes
collide in the first few steps because they all start horizontally or vertically. This can
be implemented differently to help out with the correctness of the recreated image. For
the corners we have defined special cases and the snakes there starts with a 45 degree
slope towards the center of the image. One could think of a solution where starting
directions for the snake are determined by the distance to the closest edge. Perhaps by
giving the snake a starting direction towards the center point of the image. This would
give the snake a probability of starting at an arbitrary angle to its edge, rather than
strictly perpendicular. It would of course be possible to store the starting angle, bypassing
this problem completely. With the previous discussed extension of using endpoints this
solution would be unnecessary.

As of now, the snakes have the largest probability to continue in the direction it headed
in the last step. That means that if the snake turns it will be more probable for it to
continue in the new direction, than to resume the old one. This is a major flaw with the
implementation but is not a limit for the algorithm. We have discussed implementations
where one use the start point to determine the main direction for the snake. This main
direction would make the snake more attracted to continue on its path than to diverge
away from it. We believe this to be a more accurate description of the behaviour for
faults. Instead of comparing with the start point we have also discussed the possibility of
using the snakes tail to determine the most likely direction. This would work in a similar

11

way but could maybe allow for more divergence in the path the snakes follow.

The snake algorithm is very well suited for parallel computation. One could let each
processor handle one, or a group of snakes or let each processor take care of one area of
the image. The first suggestion would imply a large overhead where the processors have
to send and receive the tails of all snakes in each step so that they can determine if a
collision occur. The second would take care of this problem but can instead be very load
imbalanced so that some processors get areas where no snakes ever appear and others get
lots of computations. This can of course be reduced by choosing a smarter computational
grid. However, to create the snakes is not the most expensive part of the algorithm. When
we ran a profiler it showed that nearly 60% of the total time was spent calculating the
lacunarity matrix. This process is completely parallelizable and could therefore save a
lot of time being done by a cluster of computers.

Referenser

[1] Yadvinder Malhi och Rosa Maŕıa Román-Cuesta. ”Analysis of lacunarity and scales
of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies”. I:
Science Direct 112 (jan. 2008): Remote Sensing of Environment, s. 2074–2087. url:
http://www.geog.ox.ac.uk/˜ymalhi/publications/publications2008/2008-
remotesensing-lacunarity.pdf.

[2] Wikipedia page: Fraktal. url: http://sv.wikipedia.org/wiki/Fraktal (hämtad
2011-11-02).

[3] Wikipedia page: Sierpinsky triangle. Engelska. url: http://en.wikipedia.org/
wiki/Sierpinski_triangle (hämtad 2011-11-03).

12

http://www.geog.ox.ac.uk/~ymalhi/publications/publications2008/2008-remotesensing-lacunarity.pdf
http://www.geog.ox.ac.uk/~ymalhi/publications/publications2008/2008-remotesensing-lacunarity.pdf
http://sv.wikipedia.org/wiki/Fraktal
http://en.wikipedia.org/wiki/Sierpinski_triangle
http://en.wikipedia.org/wiki/Sierpinski_triangle

A Compression algorithm

Here we list the code needed to run the compression part. The function SLtransform is
the main function.
function [mask ,boxDim ,L, frameIndex]= SLtransform (fracImage ,N, plotOn)

close all

if(N == 0)
fracImage = im2bw (fracImage (1: length (fracImage) ,1: length (fracImage)));

else
fracImage = im2bw (fracImage (1:N ,1:N));

end

drawImage (fracImage , plotOn);
mask = getMaskFromImage (fracImage)
boxDim = getBoxDimensionOfImage (fracImage ,mask , plotOn)
L = getTotalLacunarityOfImage (fracImage ,mask , plotOn)
frameIndex = getFrame (fracImage)

end

function b = drawImage (fracImage , plott)
if ((plott == 1) || strcmpi (plott ,’yes ’) ||...

strcmpi (plott ,’y’) || strcmpi (plott ,’plot ’))
imshow (fracImage)

end
end

%
% MASK = GETMASKFROMIMAGE (FRACIMAGE)
% Returns a vector containing the maximum number of masks that can be
% retrieved from the image FRACIMAGE. It needs an image that is a square
% with sides 2ˆn where n is integer. The mask is set to go from top
% level (4 equally sized squares) to bottom level (1 pixel). We
% neglect the case where length(MASK)== length(FRACIMAGE) for obvious
% reasons.
%
function mask = getMaskFromImage (fracImage)

mask = zeros (log2 (length (fracImage)), 1);
for i = 1: length (mask)

mask(i) = 2ˆ(i -1);
end
mask = mask(end : -1:1); % Flip the mask vector

end

%
% BOXDIMENSION returns a polyfit of the box dimension of the image.
% BOXDIMENSION = GETBOXDIMENSIONOFIMAGE (FRACIMAGE ,PLOT)
% BOXDIMENSION is a 2x1 vector containing the K and M value of the formula
% Y = K*X+M which is a polyfit of the boxcount for different levels in
% FRACIMAGE . The levels goes from 2ˆ2n (n is integer) squares down to
% 2x2 pixel boxes for the image FRACIMAGE . The resulting box counting
% vector , containing the number of set pixels at each level , is plotted
% versus the vector containing the levels. The BOXDIMENSION is then the
% slope of the graph which is obtained by performing polyfit on the
% graph mentioned .
%
function boxDimension = getBoxDimensionOfImage (fracImage , maskLengths , plott)

levels = length (maskLengths); % get number of levels from image
nrOfSetPixels = zeros (levels , 1);
for i = 1: levels

nrOfSetPixels (i) = countSetPixelsInImage (fracImage , maskLengths (i));
end
dimFit = polyfit (log(maskLengths),log(nrOfSetPixels) ,1);
boxDimension = nrOfSetPixels ;

%%%
%%% The following section draws the graph and the 1-degree polyfit of
%%% the values if set by user.
%%%

13

if ((plott == 1) || strcmpi (plott ,’yes ’) ||...
strcmpi (plott ,’y’) || strcmpi (plott ,’plot ’))

figure
plot (log(maskLengths),log(nrOfSetPixels),’b’);
grid on
hold on
plot (log(maskLengths), dimFit (1)* log(maskLengths)+ dimFit (2) , ’r’)
hold off
xlabel (’log(maskLengths)’)
ylabel (’log(nr of set pixels)’)

end
end

%
% COUNTSETPIXELSINIMAGE counts the non -zero pixels in an image.
% [SETPIXELCOUNT , TOTALNUMBEROFBLOCKS] =
% COUNTSETPIXELSINIMAGE (FRACIMAGE , MASKLENGTH)
% returns the number of set (non -zero) pixels in an image fracImage.
% The function takes the image , FRACIMAGE , and length of the mask ,
% MASKLENGTH .
%
% The MASKLENGTH partitions the image into blocks of MASKLENGTH ˆ2
% elements.
%
% For example , if MASKLENGTH is set to 1 the function counts all set
% pixels in the image. If the mask is set to 2 the image is
% partitioned in to 2 by 2 blocks and the function counts all blocks
% which have at least one set pixel in them. The total number of
% blocks created by COUNTSETPIXELSINIMAGE is returned in
% TOTALNUMBEROFBLOCKS . That is , if MASKLENGTH = length(fracImage) the
% function returns [1 ,1] if the image contains at least one non -zero
% pixel. [0 ,1] otherwise.
%
% Warning messages result if IMAGELENGTH or MASKLENGTH is not of the
% form 2ˆn where n is an integer. Also if IMAGELENGTH < MASKLENGTH < 1.
%
function [setPixelCount , totalNrOfBlocks] = countSetPixelsInImage (fracImage , maskLength)
imageLength = length (fracImage);
nrOfMasks = imageLength / maskLength ;
setPixelCount = 0;
totalNrOfBlocks = nrOfMasks ˆ2;
for rmi = 0: nrOfMasks -1 % rowMaskIndex loops over all masks

for cmi = 0: nrOfMasks -1 % colMaskIndex
ml = maskLength ; % shorthand for maskLength to be used as index in fracImage
pixelIsSet = isAnyPixelSetInMask (fracImage (rmi*ml +1:(rmi +1)*ml ,...
cmi*ml +1:(cmi +1)* ml)); % Sending the current part of fracImage to the function
if (pixelIsSet)

setPixelCount = setPixelCount + 1;
end

end
end
end

function L= getTotalLacunarityOfImage (fracImage ,mask , plott)
L= zeros (length (mask));
for i=1: length (mask)

thisImage = getSubImage (fracImage ,mask(i));
for j= length (mask): -1: length (mask)-i+1

L(i, length (mask)-j+1)= lac2(thisImage ,mask(j));
end

end

if ((plott == 1) || strcmpi (plott ,’yes ’) ||...
strcmpi (plott ,’y’) || strcmpi (plott ,’plot ’))

figure
epsilon =mask ./ length (fracImage);
plot (log(epsilon),log(L),’b’)
grid on
xlabel (’log(maskLength)’)
ylabel (’log(Lacunarity)’)

end

end

14

function outMat = getSubImage (inMat , mask)
nrOfMasks = length (inMat)/ mask;
outMat = zeros (nrOfMasks);

for rmi = 0: nrOfMasks -1 % rowMaskIndex loops over all masks
for cmi = 0: nrOfMasks -1 % colMaskIndex

m = mask; % shorthand for maskLength to be used as index in fracImage
pixelIsSet = isAnyPixelSetInMask (inMat (rmi*m+1:(rmi +1)*m ,...
cmi*m+1:(cmi +1)*m)); % Sending the current part of fracImage to the function
if (pixelIsSet)

outMat (rmi +1, cmi +1) = 1;
end

end
end

function L = lac2(fracImage ,mask)
imageLength = length (fracImage);
totalBox =(imageLength -mask +1)ˆ2;%N
n= zeros (mask ˆ2+1 ,1);

for i=1: imageLength%yled
for j=1: imageLength%xled

if(fracImage (i,j)==2)
fracImage (i,j)=1; %säter 2or till 1or

end
end

end

for col =1:(imageLength -mask +1)
for row =1:(imageLength -mask +1)

temp=sum(sum(fracImage (row:row+mask -1, col:col+mask -1)));
n(temp +1)=n(temp +1)+1;

end
end
n=n./ totalBox ;%Q
s= find (n) -1;
z1 = zeros (length (s) ,1);%
z2 = zeros (length (s) ,1);%
for i=1: length (s)

z1(i)=s(i)*n(s(i)+1);
z2(i)=s(i)ˆ2*n(s(i)+1);

end
L=sum(z2)/(sum(z1))ˆ2;

end

function index = getFrame (fracImage)
w= zeros (length (fracImage));

w(1 ,:)= fracImage (1 ,:); %first row
w(2: end -1 ,1)= fracImage (2: end -1 ,1); %first col ,
w(2: end -1, end)= fracImage (2: end -1, end); %last col
w(end ,:)= fracImage (end ,:); %last row

[index (: ,1) , index (: ,2)]= find (w); %return startpoints as [x y]
end

B Recreation with Semi-Randomized
Algorithm

function A = recreateImage (BC ,Lac ,mask)

imageSize = 2* mask (1);
A = 1;
lastTempLac = zeros (1, length (BC));
tempLac = zeros (1, length (BC));
nrOfSubBoxes = getLevelsFor (imageSize).ˆ2;
BC = nrOfSubBoxes -BC;

15

for level = 1: length (BC)
disp (level);
% Stores all filled pixels as 1
A = expandMatrix (A);
% number of set boxes on this level < nrOfSubBoxes
if (BC(level) ˜= 0)

[indx indy] = chooseRandomUnSetPixel (A);
% randoms an index for empty element in A
while (isempty (indx) == 0 && (length (find (A==0)) < BC(level)))

% Set the randomly chosen pixel to 0
A(indx ,indy) = 0;
for i = 1: level

% calculate lacunarity for the testmatrix
tempLac (i) = lac(A ,2ˆ(i -1));

end
if (abs(sum(tempLac - Lac(level ,:))) < ...

abs(sum(lastTempLac - Lac(level ,:))))
% keep if lacunarity gets better , otherwise ...
lastTempLac = tempLac ;

else
% ... discard and "one" the suggested pixel
A(indx ,indy) = 1;

end
% randoms an index for empty element in A
[indx indy] = chooseRandomUnSetPixel (A);

end
end

end

imshow (A,’border ’,’tight ’);
end

function levels = getLevelsFor (imageLength)
A = zeros (imageLength);
levels = getMaskFromImage (A);
levels = levels (end -1: -1:1);
levels = [levels ; imageLength];
return ;

function B = expandMatrix (A)
B= zeros (length (A)*2);

for col =1: length (A)
for row =1: length (A)

if(A(row ,col)==1)
xcord =2* row -1:2* row;
ycord =2* col -1:2* col;
B(xcord , ycord)=1;

end
end

end
end

function [indx indy] = chooseRandomUnSetPixel (inMat)

[xcoord , ycoord] = find (inMat == 1);
randomIndex = randi (length (xcoord) ,1 ,1); % Random one of the elements
indx = xcoord (randomIndex); % Return that element
indy = ycoord (randomIndex);
end

C Recreation with Snake Algorithm

clear all

[mask ,boxDim ,Lac , index] = SLtransform (imread (’../ images /tes.tif ’),0,’n’);
%load(’ fredrikfrak .mat ’);

img = FracImage (boxDim ,Lac ,index ,mask (1)*2);
class (img)

16

boxDim = boxDim

N=4; %runs

H=cell(N ,1);
K= zeros (N ,1);
difMat =cell(N ,1);

%probVec= 1: -1/ log2(img.totalSize):1/ log2(img.totalSize)
figure

for rep =1:N
rep
A= evolveSnakes (img , log2 (img. totalSize));
H{rep }=A;
L2 = getTotalLacunarityOfImage (A,mask ,’n’);
b = getBoxDimensionOfImage (A,mask ,’n’);
difMat {rep }=(Lac -L2);
K(rep)= sum(sum(abs(difMat {rep })));

end
K

in= find (K== min(K))
imshow (H{in (1)})

classdef FracImage
properties

boxDim
lac
frameIndex
snakes
currentBox
totalSize

end
methods

function obj = FracImage (boxDim ,lac , frameIndex , totalSize)
obj. totalSize = totalSize ;
obj. boxDim = boxDim ;
obj.lac = lac;
obj. frameIndex = frameIndex ;
obj. currentBox = 0;
obj. snakes = {0};

end

function frame = levelFrameIndex (obj , level)
% Converts the frame for diffrent levels
frame = ceil (obj. frameIndex .*(2ˆ level)/ obj. totalSize);

end

function A = evolveSnakes (obj , level)
frame = levelFrameIndex (obj , level); % contains set pixels on the frame for this level
obj. snakes = cell(size (frame ,1),1);
totalNrOfSnakes =0;
for i = 1: size (frame ,1)

% Here we create the snakes that are starting from the edge
obj. snakes {i} = Snake (frame (i ,:) ,2ˆ level);
totalNrOfSnakes =1+ totalNrOfSnakes ;

end

snakeIndex = 1;
vikt = sum (1:(level))*1.5;% The probability weight

while (anySnakeIsAlive (obj))
% Grow all snakes until they are dead
obj = killer (obj , snakeIndex , level);
[obj. snakes { snakeIndex }, obj. currentBox] = move(obj. snakes { snakeIndex }, obj. currentBox ,vikt);
obj = collision (obj , snakeIndex);
snakeIndex = mod(snakeIndex , size (obj.snakes ,1))+1;% Get next snake from cell array

if(˜ anySnakeIsAlive (obj) && obj. currentBox < obj. boxDim (level))
% If all snakes are dead but the total number of pixels
% set are too few
if (size (getTail (obj. snakes {end }) ,1) < 2)

17

% If last snake is shorter than 2 pixels
% Ignore it!
totalNrOfSnakes = totalNrOfSnakes -1;

end
obj= splitSnake (obj ,level , totalNrOfSnakes);
totalNrOfSnakes = totalNrOfSnakes +1;

end
end
A= snakeImage (obj);

end

function obj = splitSnake (obj ,level , totalNrOfSnakes)
% Splits the snake into two different snakes
start = [0 0];
while (size (start ,1) < 4)

snakeNr = randi (totalNrOfSnakes ,1 ,1);
start = getTail (obj. snakes { snakeNr });

end
tailNr = randi ([3 size (start ,1) -1] ,1 ,1);
obj. currentBox =obj. currentBox -1;
obj. snakes { totalNrOfSnakes +1 ,1} = Snake (start (tailNr ,:) ,2ˆ level);

end

function obj = killer (obj , snakeIndex , level)
% If the nr of set pixels are equal to the allowed nr pixels we kill all snakes
if(obj. currentBox >= obj. boxDim (level))

obj. snakes { snakeIndex } = killSnake (obj. snakes { snakeIndex });
end

end
function obj = collision (obj , snakeIndex)

% Kills the snake when it crashes into another snake
thispos = getPos (obj. snakes { snakeIndex });
for i=1: size (obj.snakes ,1)

A= getTail (obj. snakes {i});
for j=1: size (A ,1)

if(thispos (1) == A(j ,1) && thispos (2) == A(j ,2))
obj. snakes { snakeIndex }= killSnake (obj. snakes { snakeIndex });

end
end

end
end

function A = printSnakes (obj ,frame ,t)
disp (’All snakes ’)
if(t==0)

for i = 1: size (frame ,1)
disp (obj. snakes {i})

end
else

disp (obj. snakes {t})
end

end
function A = anySnakeIsAlive (obj)

A = 0;
for i = 1: size (obj.snakes ,1)

A = A + isAlive (obj. snakes {i});
end

end
function A = snakeImage (obj)

% Creates the final image with all snakes
A = zeros (obj. totalSize);
for i = 1: size (obj.snakes ,1)

tail = getTail (obj. snakes {i});
for j = 1: size (tail ,1)

A(tail(j ,1) , tail(j ,2)) = 1;
end

end
end

end
end

18

classdef Snake
properties

pos %current position
tail %previous position
direction % direction
lives %life
totalSize %Total size of world

end
methods

function obj = Snake (start , totalSize)
obj.pos = start ;
obj.tail = [];
obj. lives = 1;
obj. direction = [0 ,0];
obj. totalSize = totalSize ;

end

function [obj , currentBox] = move(obj , currentBox ,vikt)
% Returns the new direction , position and if its alive a pixel is set

if(isAlive (obj))
% If NOT on boundary
if(obj.pos (1) >2 && obj.totalSize -1 > obj.pos (1) && obj.pos (2) >2 && obj.totalSize -1 > obj.pos (2))

p = possibleDir (obj);
obj. direction = newDir (obj ,p,vikt);

else
obj = boundaryCheck (obj ,vikt);
if (˜ isAlive (obj))

return
end

end

obj.tail = [obj.tail;obj.pos]; %Add position to tail
obj.pos = obj.pos + obj. direction ; % Update position
currentBox = currentBox +1;

end
end

function lives = isAlive (obj)
% Check if the snake is alive
lives = obj. lives ;

end

function obj = killSnake (obj)
% Kills the snake
obj. lives = 0;

end

%stopa in detta i new direction
function sto = getPreviosDir (obj)

i=1;%får inte vara udda tal i sådant falll ändra h=totsize
if(length (obj.tail)>i)

direction = obj.pos -obj.tail(i ,:);
if(direction (1)==0 && direction (2)˜=0)

hypotunusan = sqrt (sum ((obj.pos -obj.tail(i ,:)).ˆ2));%kord
Z = obj.pos (2) - obj.tail (1 ,2);%
Q = obj.pos (1) - obj.tail (1 ,1);%
vinkel = abs(atan (Q/Z));%
if(direction (2) >0)

Y = hypotunusan *sin(pi/4- vinkel);
X = hypotunusan *sin(pi /4+ vinkel);

else
X = hypotunusan *sin(pi/4- vinkel);
Y = hypotunusan *sin(pi /4+ vinkel);

end

elseif (direction (1)˜=0 && direction (2)==0)
hypotunusan = sqrt (sum ((obj.pos -obj.tail(i ,:)).ˆ2));%kord
Z = obj.pos (1) - obj.tail (1 ,1);%
Q = obj.pos (2) - obj.tail (1 ,2);%
vinkel = abs(atan (Q/Z));%
if(direction (1) >0)

X = hypotunusan *sin(pi/4- vinkel);

19

Y = hypotunusan *sin(pi /4+ vinkel);
else

Y = hypotunusan *sin(pi/4- vinkel);
X = hypotunusan *sin(pi /4+ vinkel);

end
else

skift = sqrt (sum ((obj.pos -obj.tail(i ,:)).ˆ2));%kord
if(direction (1) >0 && direction (2) >0 || direction (1) <0 && direction (2) <0)

X = obj.pos (1) - obj.tail (1 ,1);%
Y = obj.pos (2) - obj.tail (1 ,2);%

elseif (direction (1) <0 && direction (2) >0 || direction (1) >0 && direction (2) <0)
Y = obj.pos (1) - obj.tail (1 ,1);%
X = obj.pos (2) - obj.tail (1 ,2);%

end
vinkel = abs(atan (Y/X));%
Z = skift *cos(pi/4- vinkel);%

end
else

h=obj. totalSize +1-i;
pos = obj.pos;
if(pos (1) <=h/2 && pos (2) <=h/2)

X = (h/2 -1)+ pos (1);
Y = (h/2 -1)+ pos (2);

elseif (pos (1) >=h/2 && pos (2) >=h/2)
X = (h/2) - pos (1);
Y = (h/2) - pos (2);

elseif (pos (1) >=h/2 && pos (2) <=h/2)
X = -(h/2)+ pos (1);
Y = (h/2 -1)+ pos (2);

elseif (pos (1) <=h/2 && pos (2) >=h/2)
X = -(h/2)+ pos (2);
Y = (h/2 -1)+ pos (1);

end

skift = sqrt (sum(Xˆ2+Y ˆ2));%kord
vinkel = abs(atan (Y/X));%
Z = skift *cos(pi/4- vinkel);%
prob = 1/(abs(Y)+ abs(X)+ abs(Z));%
sto = abs ([X,Z,Y])* prob;%

end

prob = 1/(abs(Y)+ abs(X)+ abs(Z));%
sto = abs ([X,Z,Y])* prob; %X sanolikheten att svänga vänstr Y åt höger och Z rakt fram

end

function direction = newDir (obj ,vecDir ,vikt)
sto= getPreviosDir (obj);
styrning =vikt;
r= rand * styrning ;
if(r<sto (1))

direction = vecDir (1 ,:);
elseif (r >= sto (1) && r<sto (3)+ sto (1))

direction = vecDir (3 ,:);
elseif (r >= sto (3)+ sto (1) && r< styrning)

direction = vecDir (2 ,:);
end

end

function vecDir = possibleDir (obj)
% Returns the possible directions a snake can take based on how
% it moved in the last step
direction = obj. direction ;
% -> [-1,-1] ->[-1, 0] ->[-1, 1]
% ˆ V
% A = [0,-1] [0, 0] [0, 1]
% ˆ V
% [1,-1] <-[1, 0] <-[1,1]
% The cell array A holds all the 8 directions a snake can take
% orderd as above
A={[-1 , -1] ,[-1 ,0] ,[-1 ,1] ,[0 ,1] ,[1 ,1] ,[1 ,0] ,[1 , -1] ,[0 , -1]};
if(direction ==[0 ,0])

% Move to a random direction

20

midpoint = [obj. totalSize /2, obj. totalSize /2];
if(obj.pos == midpoint)

direction =A{ randi (length (A) ,1 ,1)};
elseif (obj.pos (1) >3 || obj.pos (1) < obj.totalSize -3 ||...

obj.pos (2) >3 || obj.pos (2) < obj.totalSize -3)
direction = midpoint -obj.pos;

else
direction =A{ randi (length (A) ,1 ,1)};

end
direction = round (direction / sqrt (sum(direction .ˆ2)));

end
% Chooses the direction
for i=1:8

if(direction ==A{i}) % Find the last direction
if(i == 1)

vecDir = [A{8};A{1};A {2}];
elseif (i==8)

vecDir = [A{7};A{8};A {1}];
else

vecDir = [A{i -1};A{i};A{i +1}];
end

end
end

end

function obj = boundaryCheck (obj ,vikt)
% Returns the new direction or ,
% if the snake crashes into a wall / edge: KILL IT!

A=.8; % probability to change direction at the edges
xl =2;
yl=obj.totalSize -1;
% all snakes larger than two pixels
if (size (obj.tail ,1) >2)

% upper or lower edge
if(obj.pos (1) == xl || obj.pos (1) == yl) %

% Snake runs straight into wall
if(abs(obj. direction (1))==1 && obj. direction (2)==0)

obj = killSnake (obj);
% If snake runs diagonal into wall

elseif (sum(abs(obj. direction))==2)
%obj.direction = obj. direction .*[0 ,1];%[-1 ,1]
obj = killSnake (obj);
% The snake i moving along with the edge

elseif (obj.pos (1) == xl && obj. direction (1)==0 && obj. direction (2)==1)
if(rand >=A)

obj. direction = [0 ,1];
else

obj. direction = [1 ,1];
end
% The snake i moving along with the edge

elseif (obj.pos (1) == xl && obj. direction (1)==0 && obj. direction (2)== -1)
if(rand >=A)

obj. direction = [0 , -1];
else

obj. direction = [1 , -1];
end
% The snake i moving along with the edge

elseif (obj.pos (1) == yl && obj. direction (1)==0 && obj. direction (2)==1)
if(rand >=A)

obj. direction = [-1 ,1];
else

obj. direction = [0 ,1];
end
% The snake i moving along with the edge

elseif (obj.pos (1) == yl && obj. direction (1)==0 && obj. direction (2)== -1)
if(rand >=A)

obj. direction = [-1 , -1];
else

obj. direction = [0 , -1];
end

end

21

% left or right edge
elseif (obj.pos (2) == xl || obj.pos (2) == yl)

% Snake runs straight into wall
if(obj. direction == [0 ,1])

obj = killSnake (obj);
% Snake runs straight into wall

elseif (obj. direction == [0 , -1])
obj = killSnake (obj);
% If snake runs diagonal into wall

elseif (sum(abs(obj. direction))==2)
obj = killSnake (obj);%obj. direction = obj. direction .*[1 ,0];%[1 , -1];
% The snake i moving along with the edge

elseif (obj.pos (2) == xl && obj. direction (1)== -1 && obj. direction (2)==0)
if(rand >=A)

obj. direction = [-1 ,1];
else

obj. direction = [-1 ,0];
end
% The snake is moving along with the edge

elseif (obj.pos (2) == xl && obj. direction (1)==1 && obj. direction (2)==0)
if(rand >=A)

obj. direction = [1 ,1];
else

obj. direction = [1 ,0];
end
% The snake is moving along with the edge

elseif (obj.pos (2) == yl && obj. direction (1)==1 && obj. direction (2)==0)
if(rand >=A)

obj. direction = [1 , -1];
else

obj. direction = [1 ,0];
end
% The snake is moving along with the edge

elseif (obj.pos (2) == yl && obj. direction (1)== -1 && obj. direction (2)==0)
if(rand >=A)

obj. direction = [-1 , -1];
else

obj. direction = [-1 ,0];
end

end
end

else
% Move towards the center of the image
p = possibleDir (obj);
obj. direction = newDir (obj ,p,vikt);

end
end

function direction = getDir (obj)
direction = obj. direction ;

end

function pos = getPos (obj)
pos = obj.pos;

end

function tail = getTail (obj)
tail = obj.tail;

end

function A = printAll (obj)
disp (obj)

end
end

end

22

	Introduction
	Theory
	Fractals
	Box counting
	Lacunarity

	Problem description
	Method of Compression
	Methods of Recreation
	The Brute Force Algorithm
	Semi-Randomized Algorithm
	The Snake Algorithm

	Results
	Discussion
	References
	Compression algorithm
	Recreation with Semi-Randomized Algorithm
	Recreation with Snake Algorithm

