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Abstract
The diffusion processes of molecules in a living cell are simulated and analyzed based on

a multiscale model, which is a combination of a microscopic model and a mesoscopic model.
In a microscopic model the exact position of each individual molecule is followed. A coarser
level of modeling is the mesoscopic model where the state of the system is given by the copy
number of molecules of each species in voxels in a discretized space. The relationship between
these two models and the methods to couple them will be studied in simulations.
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1 Introduction
There are two basic chemical processes of the molecules in a living cell: diffusion and reaction.
In this report, the diffusion processes are analyzed and studied. Diffusion can be considered as
random migration of molecules due to the thermal energy [3]. Generally, there are two fundamental
approaches to the mathematical modeling of chemical diffusions: deterministic models which are
based on partial differential equations (PDEs) for the concentrations of the molecules involved
and the stochastic simulations with a multiscale model.

For the first approach, it is assumed that there is a large number of molecules in the system.
However, it does not always hold in a living cell as some species appear in a very small copy
number, thus an error would be the result.

Compared with the first approach, a stochastic model gives a more accurate result. In general,
there are two distinct levels: microscopic level and mesoscopic level. At a microscopic level the
diffusion process is based on Brownian motion (molecular-based) and it is simulated by the cal-
culation of trajectories of the molecules. A coarser level of modeling is the mesoscopic level where
the state of the system is given by the number of molecules of each species in cubes in a discretized
space (cube-based).

The simulation at a microscopic level is accurate because each molecule is tracked individually
by an exact position and free to migrate in a continuous domain. The position, which is denoted by
the coordinate in 3D, is updated in a small time step. However, it is also expensive and sometimes
it is a waste of time if the precise positions of the molecules are not so important. Therefore, it is
only preferred when the concentrations are very small.

The simulation at a mesoscopic level is characterized by a discretization of the spatial domain
into cubes. The state of the system is considered to be the number of molecules in the cubes. A
molecule is free to migrate in the form of a discrete jump from one cube to another. The molecules
in the same cube are indistinguishable. Thus, the cube-based model does not represent the real
trajectories of the molecules. It is easier to implement and preferred when the concentrations are
large.

In this report, we propose a model which couples the simulation at both microscopic level and
mesoscopic level. The whole domain Ω is divided into two parts, ΩM and ΩC , with an interface
I between them. In order to find the best way to couple these two models we need to study and
summarize the molecular-based and cube-based simulation algorithms. We are also interested in
the way that a molecule migrates across the boundary I.

2 Molecular-based modeling
The molecular-based model is based on Brownian dynamics. The approach to simulate such a
system is to use a time-driven algorithm by choosing a small time step, say ∆t, and updating the
position of each molecule by the discretized version of stochastic differential equations [5]. Here
we need to generate random numbers which are normally distributed with mean 0 and variance
1. The probability density function (PDF) is

f(x) =
1√

2πσ2
e−

(x−u)2

2σ2 (1)
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(a) (b)

Figure 1: (a) The PDF of the normal distribution with mean 0 and variance 1 (b) The CDF of
the normal distribution with mean 0 and variance 1

and the cumulative distribution function (CDF) is

F (x) =
1

2
[1 + erf(

x− u√
2σ

)] (2)

shown in Figure 1.
We use these random numbers to calculate the new positions of the molecules at the next time

step. Once the time step ∆t is selected, the new positions are also affected by a diffusion constant
D. The diffusion constant D is proportional to the expected squared velocity of the diffusing
molecules, which depends on the temperature, viscosity of the fluid in the living cell and the size
of the molecules according to the Stokes-Einstein relation [11].

Another important issue to be considered is that the diffusion occurs in a bounded domain, a
cube with side length L. It leads to that the domain in the simulation must have a boundary and
suitable boundary conditions which could be reflective, absorbing or reactive [4]. In this report,
we use reflective boundary conditions.

We simulate up to a certain time and then sum up the number of molecules along y-direction
and z-direction, study the distribution along x-direction which should converge to the mean value
with the assumption that we have a large amount of molecules. The mean value is the solution of
the partial differential equation for the density ϕ

∂ϕ

∂t
= D

∂2ϕ

∂x2
, 0 < x < L (3)

with the initial condition ϕ(x, 0) = δ(k−x) and boundary condition ϕx(0, t) = ϕx(1, t) = 0 where
δ is the Dirac distribution at the origin and k is the x-coordinate of the molecule at time 0. The
solution can be found by applying the method of separation of variables to (3) as follows:

ϕ =
1

L
+

∞∑
n=1

2

L
cos(knπ) cos

nπx

L
e−D(nπL )2t. (4)

We use (4) to test the convergence of our algorithms. The procedure of the molecular-based
modeling is summarized in Algorithm 1.

3 Cube-based modeling
in this section, Gillespie’s Stochastic Simulation Algorithm [8] is described. The main idea of
the cube-based modeling is to use an event-driven algorithm in a discretized space as simulation
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Algorithm 1 Molecular-based algorithm

(a) Generate three normally distributed (with zero mean and unit variance) random numbers
ξx, ξy and ξz.

(b) Compute the position of the molecle at time t+ ∆t by

X(t+ ∆t) = X(t) +
√

2D∆tξx (5)

Y (t+ ∆t) = Y (t) +
√

2D∆tξy (6)

Z(t+ ∆t) = Z(t) +
√

2D∆tξz (7)

(c) If a molecule moves across the boundary in the x-direction, then reflect it back at the same
time step as follows

If X(t+ ∆t) computed by (1.1) is less than 0, then
X(t+ ∆t) := −X(t+ ∆t)

If X(t+ ∆t) computed by (1.1) is greater than L, then
X(t+ ∆t) := 2L−X(t+ ∆t)

Reflect the molecule back when it moves across the boundary in the y-direction or z-direction
using the method above.

(d) Continue with step (a) for time t+ ∆t until the desired end of simulation.

domain. Assume that the domain of interest Ω is a cube with side L and all the molecules are
expected to move inside the domain. Then the domain is discretized into many small cubes with
equal side length, say h, which should be chosen appropriately to make sure that n = L

h is
an integer. Thus, we have n3 small cubes. Molecules do not have exact positions as they do in
molecular-based models. Instead, they are only assigned to be in one of the cubes at a given time
and allowed to jump from one cube to another based on availability. We denote the number of
molecules in the i-th cube by A(x, y, z) where x, y, z = 1, 2, ..., n and i = x+ (y− 1)n+ (z − 1)n2.

3.1 Available cubes for jump

Now we determine the number of available cubes to which a molecule can jump according to its
current position.

(i) If a molecule is currently in a cube which lies on none of the six faces of Ω, then there are
six available cubes and it can jump to the cube with the direction of up, down, left, right,
front or back. See Figure 2(a).

(ii) If a molecule is currently in a cube which lies on only one of the six faces of Ω, then there
are five available cubes. See Figure 2(b).

(iii) If a molecule is currently in a cube which lies on two of the six faces of Ω, then there are
four available cubes. See Figure 2(c).

(iv) If a molecule is currently in a cube which lies on three of the six faces of Ω, then there are
three available cubes. See Figure 2(d).
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(a) (b)

(c) (d)

Figure 2: Four cases of the number of available cubes: A molecule is currently in the red cube with
whose available cubes are illustrated by the yellow cubes
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3.2 Propensity functions
In the event-driven algorithm, only one molecule is allowed to move when an event occurs. The
direction is selected with the help of propensity functions. We denote them by αi(t), where i =
1, 2, ..., n3. At time t, αi(t) is the probability that the diffusion event occurs in the i− th cube in
the time interval [t, t+ dt). Here we assume that all the jumps have the same rate constant d. It
is calculated by d = D

h2 where D is the diffusion constant and h is the side length of a small cube.
The propensity functions at time t are computed by αi(t) = At(x, y, z)d where x, y, z = 1, 2, ..., n
and i = x+ (y − 1)n+ (z − 1)n2. Then compute:

α1 = d

n−1∑
z=1

n∑
y=1

n∑
x=1

A(x, y, z) (8)

α2 = d

n∑
z=2

n∑
y=1

n∑
x=1

A(x, y, z) (9)

α3 = d

n∑
z=1

n∑
y=1

n∑
x=2

A(x, y, z) (10)

α4 = d

n∑
z=1

n∑
y=1

n−1∑
x=1

A(x, y, z) (11)

α5 = d

n∑
z=1

n∑
y=2

n∑
x=1

A(x, y, z) (12)

α6 = d

n∑
z=1

n−1∑
y=1

n∑
x=1

A(x, y, z) (13)

α7 = α1 + α2 + α3 + α4 + α5 + α6 (14)

where α1, α2, α3, α4, α5 and α6 correspond to diffusion towards the direction of up, down, left,
right, front and back, respectively. α7 is the propensity function of diffusion in the whole system.

3.3 The time at which the next difussion event occurs
The time between two diffusion events is calculated by the formula

∆τC =
1

α7
ln(

1

r1
) (15)

where α7 is calculated by (14) and r1 is a uniformly distributed number in (0,1). This formula is
verified in [5].

3.4 Selection of molecules
The decision about which molecule jumps and which direction it takes is made with the help of a
uniformly distributed random number r in (0,1). Then we update the number of molecules in two
cubes: one is the cube the molecule jumps from; the other is the cube the molecule jumps to. We
summarize it as follows:

(i) If r < α1/α7, then find the first A(i, j, k) such that

r <
d

α7

k∑
z=1

j∑
y=1

i∑
x=1

A(x, y, z)

Then update the number of molecules at time t+ ∆τC by

At+τ (i, j, k) = At(i, j, k)− 1

At+τ (i, j, k + 1) = At(i, j, k + 1) + 1
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(ii) If r ≥ α1/α7 and r < (α1 + α2)/α7, then find the first A(i, j, k) such that

r <
1

α7
(α1 + d

k∑
z=1

j∑
y=1

i∑
x=1

A(x, y, z))

Then update the number of molecules at time t+ ∆τC by

At+τ (i, j, k) = At(i, j, k)− 1

At+τ (i, j, k + 1) = At(i, j, k + 1) + 1

(iii) If r ≥ (α1 + α2)/α7 and r < (α1 + α2 + α3)/α7, then find the first A(i, j, k) such that

r <
1

α7
(α1 + α2 + d

k∑
z=1

j∑
y=1

i∑
x=1

A(x, y, z))

Then update the number of molecules at time t+ ∆τC by

At+τ (i, j, k) = At(i, j, k)− 1

At+τ (i, j, k + 1) = At(i, j, k + 1) + 1

(iv) If r ≥ (α1 + α2 + α3)/α7 and r < (α1 + α2 + α3 + α4)/α7, then find the first A(i, j, k) such
that

r <
1

α7
(α1 + α2 + α3 + d

k∑
z=1

j∑
y=1

i∑
x=1

A(x, y, z))

Then update the number of molecules at time t+ ∆τC by

At+τ (i, j, k) = At(i, j, k)− 1

At+τ (i, j, k + 1) = At(i, j, k + 1) + 1

(v) If r ≥ (α1 + α2 + α3 + α4)/α7 and r < (α1 + α2 + α3 + α4 + α5)/α7, then find the first
A(i, j, k) such that

r <
1

α7
(α1 + α2 + α3 + α4 + d

k∑
z=1

j∑
y=1

i∑
x=1

A(x, y, z))

Then update the number of molecules at time t+ ∆τC by

At+τ (i, j, k) = At(i, j, k)− 1

At+τ (i, j, k + 1) = At(i, j, k + 1) + 1

(vi) If r ≥ (α1 + α2 + α3 + α4 + α5)/α7, then find the first A(i, j, k) such that

r <
1

α7
(α1 + α2 + α3 + α4 + α5 + d

k∑
z=1

j∑
y=1

i∑
x=1

A(x, y, z))

Then update the number of molecules at time t+ ∆τC by

At+τ (i, j, k) = At(i, j, k)− 1

At+τ (i, j, k + 1) = At(i, j, k + 1) + 1

Jumps to the directions of up, down, left, right, front and back are implemented in (i), (ii),
(iii), (iv), (v) and (vi), respectively. The procedure of the cube-based stochastic simulation is
summarized in Algorithm 2. This is a straightforward implementation of Gillespie’s Stochastic
Simulation Algorithm (SSA). Faster alternatives can be found in [7] and [9].
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Algorithm 2 Cube-based algorithm

(a) Generate two random numbers r1 and r2 which are uniformly distributed in (0, 1).

(b) Compute the propensity functions using (14).

(c) Compute the time t+ ∆τC at which the next diffusion occurs where ∆τC is given by (15).

(d) Update the whole system with the help of the algorithm in (3.4).

(f) Continue with step (a) with t+ ∆τC until the desired end of simulation.

4 Algorithm from University of Oxford

In this section, a spatially hybrid model with the two-regime method (TRM) [6], is described and
implemented in 3D. In this model, the domain of interest Ω is divided into two subdomains. One
is the molecular-based domain, denoted by ΩM and the other is cube-based domain, denoted by
ΩC . Molecules in both ΩC and ΩM are simulated according to the rules defined by their particular
algorithms. The illustration of this model is shown in Figure 3(a). There is also an interface
between ΩM and ΩC , denoted by I. The molecules in ΩM are allowed to move to ΩC via I and
vice versa. As we already have the algorithms for molecules moving inside each subdomain, we
will shortly show how to treat the molecules if they move across the interface.

The simulations of ΩM and ΩC are performed continuously with the help of random numbers.
The process is illustrated in Figure 3(b). The procedure is summarized in Algorithm 3.

The algorithm proceeds by repeating steps (c) and (d), which computes C-events and M-
events, respectively. At each M-event, the new molecules that migrated from ΩC to ΩM are intro-
duced by placing them at a distance x from the interface I that is sampled from the probability
distribution f(x) given by

f(x) =

√
(

π

4D∆t
)erfc(

x√
4D∆t

) (17)

The probability density function (PDF) and the cumulative distribution function (CDF) are shown
in Figure 4. It is computationally expensive to sample from f(x). Instead, x can be computed
approximately as [1]:

x =
√

2D∆t
0.729614P − 0.70252P 2

1− 1.47494P + 0.484371P 2
(18)

where P is a uniform deviate between 0 and 1.
The y and z coordinates are sampled from the uniform distribution.
The propensity for molecules to migrate from cubes adjacent to the interface I into ΩM is

given by ΦD/h2 [6] per molecule. The coefficient Φ is the change in the propensity of migration
to make the molecular flux over the interface I consistent with diffusion. Φ is determined by

Φ =
2h√
πD∆t

(19)

where ∆t is the fixed time increment defined for updating the molecules in ΩM .
For the selection of molecules moving from ΩM to ΩC via the interface, an error proportional

to the net flux over the interface occurs if one allows transfer of molecules based on whether or
not they appear on the other side of the interface [6]. Instead, we use Pm to be the probability of
the migration from ΩM to ΩC . This probability has been determined in [2] as

Pm = exp(
−∆xold∆xnew

D∆t
). (20)
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(a)

(b)

Figure 3: (a) Illustration of the domain in the multiscale model (b) Illustration of time update

(a) (b)

Figure 4: (a) The PDF of f(x) (b)The CDF of f(x)
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Algorithm 3 The two-regime method (TRM) from University of Oxford

(a) Initialize the number of molecules in the cubes in ΩC and the positions of molecules that
are in ΩM at t = 0.

(b) Choose ∆t, the time between two consecutive updates of the molecular-based regime (M-
events) in ΩM . Use

τi,j =
1

αi,j
ln(

1

ri,j
) (16)

to calculate τi,j , the times at which the next migratory events (C-events) will take place in
ΩC (or are initiated in ΩC for jumps over the interface I). Set tM = ∆t and tC = min(τi,j).
The minimum is taken over all i = 1, 2...M and j = 1, 2, ...K where M is the number of
available cubes around the i-th cube and K is the number of cubes in ΩC .

(c) if tC ≤ tM , then the next C-event occurs:

— Update the current time t = tC .

— Change the number of molecules in ΩC to reflect the specific C-event that has occured.
If this event is such that a molecule leaves ΩC bound for ΩM , then compute its initial
position in ΩM according to the method described in the text and remove it from the
corresponding cube adjacent to the interface I. Calculate the time at which the next
migratory event occurs for the current C-event by (16).

— Set tC := tC + min(τi,j).

(d) if tM < tC , then the next M-event occurs:

— Update the current time t = tM .

— Update the positions of all molecules in ΩM according to equations (5)∼(7).

— Initialize all molecules which migrated from ΩC to ΩM during previous C-events at
positions computed in step (c), using (17).

— Absorb all molecules that interact with the interface I from ΩM (excluding those just
initiated) into the cube which is closest to their last calculated positions. The molecules
moving across the interface are selected with the help of (20).

— Calculate the time at which the next migratory event occurs for the current C-event by
(16).

— Update tM := tM + ∆t and, if there are any molecules moving from ΩM into ΩC , set
tC := tC + min(τi,j).

(f) Repeat steps (c) and (d) until the desired end of the simulation
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(a) (b)

Figure 5: Illustration of splitting domain Ω into two subdomains ΩC and ΩM

5 Multiscale modeling

5.1 Initial approach

Algorithm 3 performs rather satisfactory. However, it is not efficient enough as it takes a long time
for simulation in its present implementation. In this section, we propose a more efficient algorithm
which is still accurate and converges well, the splitting domain algorithm [10].

The domain of interest is the same as shown in Figure 3. We start the simulation at time t = 0
and choose a time step ∆τ . In each time step, we simulate the subdomains separately. Firstly,
freeze ΩM , which means that the molecules in ΩM are not allowed to move, and update ΩC as
described in Algorithm 2. In order to allow molecules to move across the interface I, we add an
empty layer of cubes adjacent to the interface, which contains n2 cubes with the same side as the
ones in ΩC , see Figure 5(a). There are no molecules in these extra cubes at the beginning of each
time step, but the molecules in other cubes can jump there by diffusion. The molecules in the
extra cubes at the end of the current time step will be initialized and given the exact positions in
ΩM in the next time step. In Figure 3(a) one can see that the interface between ΩC and ΩM is
x = 0. Thus, the y-coordinates and z-coordinates can be sampled from a uniform distribution and
rescaled linearly to the corresponding intervals. There are many ways to sample the x-coordinates,
such as from a uniform distribution and from f(x) in (17). We implement both of them and
compare the results later in this report.

Secondly, freeze ΩC , which means that all the molecules in ΩC are not allowed to move, and
update ΩM as described in Algorithm 1. In order to allow molecules to move across the interface
I, we add an empty layer of cubes adjacent to the interface, see Figure 5(b). Here we must be
careful to choose the time ∆t in equations (5)∼(7) after which the positions of all molecules in
ΩM are updated. In order to keep a balance between accuracy and efficiency, we set ∆t = 1

10∆τ
which means that the positions of all molecules in ΩM are updated 10 times in each time step ∆τ .
We also need to make sure that the molecules moving across the interface can not go too far away
from the interface into ΩC in each time step ∆τ , otherwise the value of ∆τ must be decreased.
Then the time t is updated as t+∆τ and the simulation domain is switched again until the desired
end of simulation. In the initial version of this algorithm, the transfer of molecules is based on
whether or not they appear on the other side of the interface. The propensity per molecule for
molecules to migrate from cubes adjacent to the interface I into ΩM is the same as the propensity
per molecule for molecules to jump from one cube to another. The procedure is summarized in
Algorithm 4.
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Algorithm 4 Splitting domain algorithm

(a) Initialize the number of molecules in the cubes in ΩC and the positions of molecules that
are in ΩM at time t = 0.

(b) Choose ∆τ , the time between switching the simulation subdomains. Let ∆t = 1
10∆τ , the

time at which the next migratory event will take place in ΩM .

(c) Freeze ΩM and simulate ΩC

— Add a layer of empty cubes adjacent to the interface I which contains n2 same cubes
in ΩC and consider it to be part of ΩC .

— Initialize all molecules which migrated from ΩM to ΩC in the previous time step.

— Change the number of molecules in ΩC according to Algorithm 2 with the desired end
of simulation ∆τ .

(d) Freeze ΩC and simulate ΩM

— Add a layer of empty cubes adjacent to the interface I and consider it as part of ΩM .

— Initialize all molecules which migrated from ΩC to ΩM in the previous time step.

— Change the positions of all molecules in ΩM according to equations (5)∼(7) for 10
times.

(f) Update t := t+ ∆τ

(g) Repeat steps (c), (d) and (f) until the desired end of simulation.

5.2 Optimization of the initial approach

The initial approach of the algorithm gives the result with a jump over the interface. See Figure
8(a)∼8(d). We introduce the following factors to improve the accuracy.

1 Use the coefficient Φ as stated in (19).

2 Use the probability Pm as stated in (20).

3 Sample the x-coordinates of molecules moving from ΩC to ΩM with help of the probability
distribution f(x) as stated in (17).

We also combine the above factors to check the convergence and analyze the errors.

6 Experiments

In this section, the performance of the algorithms is discussed. All simulations have been done by
MATLAB and we mainly focus on the numerical efficiency and the accuracy of our algorithms.
The comparison between algorithms is also included.

6.1 Molecular-based modeling

The Molecular-based algorithm, Algorithm 1, is implemeted here. Choosing D = 10−4mm2s−1,
L = 1mm, X(0) = Y (0) = Z(0) = 0.5 and ∆t = 0.1sec, we plot ten realizations at time t = 240s.
See Figure 6(a).

Convergence can be checked based on the law of large numbers, i.e. the stochastic simulation
should converge to the deterministic counterpart with the assumption that the number of molecules
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(a) (b)

Figure 6: Trajectories of molecules and the distribution with respect to x

(a) (b)

Figure 7: (a) Cube-based model (b)The two-regime method

is large enough. Assume that there are 2000 molecules in Ω, each of which follows the molecular-
based algorithm in Algorithm 1. We use the same coefficient: D = 10−4mm2s−1, L = 1mm,
X(0) = Y (0) = Z(0) = 0.5, ∆t = 0.1s for all molecules and we simulate up to 240s. We choose
one of the three axes, say x, and divide the domain [0, L] into n = 40 intervals, each of which
has the length h = L

40 . Then we calculate the number of molecules in each interval and plot them
as histograms shown in Figure 6(b). The mean value computed in (4) is also plotted in the same
figure for comparison. Good convergence is observed here.

6.2 Cube-based modeling

The Cube-based algorithm, Algprithm 2 is implemeted here. Choosing D = 10−4mm2s−1, L =
1mm and initial condition A0(21, 21, 21) = 2000 with n = 41, we simulate up to 240s. For com-
parison we do the same thing here as in molecular-based modeling. The number of moleclues in
each interval with respect to x is plotted as a histogram in Figure 7(a). The mean value in (4) is
also plotted in the same figure. Good convergence is observed.

6.3 Two-regime method from University of Oxford

The two-regime method described by Algorithm 3 is implemeted here. Choosing ∆t = 10−6s,
D = 1mm2sec−1, L = 1mm, we simulate with 2000 molecules up to 0.1 s. In the beginning, all
molecules are placed in ΩC in cubes with equal probability. We plot the distribution of x and the

12



mean value together as shown in Figure 7(b). Good convergence is observed.

6.4 Splitting domain algorithm

Here we implement Algorithm 4. All the simulations are done with L = 1mm and n = 20. Other
coefficients are written in Table 1 and figures are shown in Figure 8 and Figure 9. There are 20
layers of cubes perpendicular to the x-axis in ΩC .

In the beginning, all molecules can either start in the left part ΩC and identical number
of molecules is assigned to each cube, or start in the right part ΩM and the exact positions are
assigned to all molecules. In the latter case, we assume that there are also small cubes in ΩM , with
the same side length of the cubes in ΩC . Identical number of molecules is assigned to each cube.
The coordinates of the molecules are given with the assumption that they are in the midpoints of
these cubes.

The explanations for the figures are as follows. Numbers 1 ∼ 8 correspond to figures (a) ∼ (h)
in Figure 8 and numbers 9 ∼ 10 correspond to figures (a) ∼ (b) in Figure 9.

1 In Figure 8(a), we can see that it converges except the part near the interface. It indicates
that the way we treat the molecules moving from ΩC to ΩM is not accurate. More molecules
should move from ΩC to ΩM . Thus increasing the diffusion rate of those molecules may be
a solution.

2 In order to see the jump near the interface clearly, we use a smaller time step. In Figure
8(b), we can see that the jump is obvious.

3 Here we use 10000 molecules. It converges quite well except the part near the interface.

4 When we simulate up to 2s, the mean value tends to a horizontal line beacuse of the law of
large numbers.

5 The coefficient Φ in (19) is introduced here. Figure 8(e) shows that there is no significant
jump near the interface.

6 We use a smaller time step here. Good agreement is observed, but it seems that a little bit
more molecules are in the right part.

7 The distribution function f(x) in (17) is introduced here. With a high probability that x
sampled from f(x) is smaller than it would be if it was sampled from a uniform distribution.
More molecules will move from ΩM to ΩC .

8 Simulation up to 2s. Compare with Figure 8(d)

9 When the molecules start from the right part without any corrections, the jump near the
interface is observed.

10 When the molecules start from the right part with the correction Φ in order to eliminate
the jump, good convergence is observed. But there are still more molecules in the starting
(right) part.

6.5 Comparison

In this section, we compare the splitting domain method with corrections to the splitting domain
method without corrections by computing the relative errors of ΩC and ΩM .

We simulate 2000 molecules starting from ΩC with L = 1mm and n = 20. Thus, there are 20
layers of cubes which are parallel to y-z-plane in ΩC and each of which contains 100 molecules.
The molecules are placed randomly in y and z directions. Firstly, we simulate using the split-
ting domain algorithm in Algorithm 4 without any corrections. The value of ∆τ is chosen from
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Splitting domain method, starting from ΩC
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Table 1: Coefficients used in the splitting domain algorithm

Index D/mm2s−1 ∆τ/s number of molecules desired time T/s Correction

starting from ΩC

1 1 1
3200 2000 0.1 None

2 1 10−6 2000 0.1 None

3 1 1
3200 10000 0.1 None

4 1 1
3200 2000 2 None

5 1 1
3200 2000 0.1 Φ

6 1 10−6 2000 0.1 Φ

7 1 1
3200 2000 0.1 Φ and f(x)

8 1 1
3200 2000 2 Φ and f(x)

starting from ΩM

9 1 1
3200 8000 0.1 None

10 1 1
3200 8000 0.1 Φ

(a) (b)

Figure 9: Splitting domain method, starting from ΩM
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(a)

(b)

Figure 10: (a)relative error starting from ΩC (b)relative error starting from ΩM
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[ 1
25600 ,

1
12800 ,

1
6400 ,

1
3200 ,

1
1600 ,

1
800 ,

1
400 ,

1
200 ,

1
100 ] one by one. As the algorithm is stochastic, the si-

mulation is repeated for five times for each ∆τ . Meanwhile, the relative errors for both ΩC and
ΩM are calculated at time t = 0.1s by

η =
I − Σ

I
(21)

where I is the mean value and Σ is the number of molecules in each compartment. We do not
use the absolute value because the sign indicates which subdomain has more molecules. The
averages of the relative errors are plotted in Figure 10(a). Secondly, we simulate using the same
algorithm with the correction Φ in (19). Finally, the probability function f(x) in (17) is included
in simulation. The relative errors for both ΩC and ΩM at time t = 0.1s are plotted in the same
figure for comparison. In this figure, we can see that the relative errors are dependent on ∆τ . Line
1, 3 and 5 have the same shape. Line 1 is below 0. It indicates that more molecules should move
from ΩC to ΩM . When Φ is included, we get Line 3 which is above 0. It indicates that too many
molecules have moved from ΩC to ΩM . When f(x) is used to give the initial positions of molecules
moving from ΩC to ΩM , we get Line 5 which is between Line 1 and Line 3. An important issue
to be considered is that Line 5 goes across 0 at a certain value of ∆τ . If we use this value in
the simulation, we can get a result that the stochastic simulation converges to the deterministic
counterpart with relative error 0. The same conclusion can be made based on Line 2, 4 and 6.

We redo the experiment above but in the beginning, initilize uniformly all molecules in ΩM .
The relative errors are plotted in Figure 10(b). The same conclusion as in Figure 10(a) can be
made.

7 Conclusion
The stochastic simulations in the molecular-based model and cube-based model converge to the
deterministic counterpart obtained by the analytical solution of the corresponding partial diffe-
rential equations. The TRM algorithm is implemented in 3D and good agreement is observed.
However, the present implementation is not computationally efficient. The splitting domain algo-
rithm suffers from the convergence problem. When the algorithm is implemented straightforeardly,
these occurs a jump near the interface. Several coefficients are introduced to improve accuracy.
Better convergence is observed in the figures. The future work could be done by computing mat-
hematically the corrections for molecules moving across the interface and determining the value
of ∆τ which gives zero relative errors.
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