

AbstratThe purpose of this projet is to build an iPhone game app whihuses sounds made by the user as a primary ontrolling input. Whenplaying the game, the user ontrols a killer whale by making soundswhere high frequenies steers the killer whale upwards, and low fre-quenies steers it downwards. The programming languages used areObjetive-C and C.

1

Contents1 Introdution -How to Build an iPhone App 3The Xode Environment . 3App-making On Other Operating Systems 42 Challenges -Sound Struggles and Objetive-C Objetions 6The Audio Challenge . 6Other Expeted Challenges . 63 Results -How it Turned Out 7Tutorials and Engines . 8Improved Audio Response . 8Graphis . 9Image Handling and Collision Detetion 10Beyond the Sea . 11Implementation examples . 12Optimization . 144 Disussion -Plenty of Fish in Objetive-C, Now What? 16Bumps Along the Way . 16What Lies Ahead . 165 List of Open Soure Libraries 17

2

1 Introdution -How to Build an iPhone AppThe purpose of this projet is to build an iPhone app, where the main ontrollinginput is sound made by the user.A mobile appliation (app) is a software appliation that is programmedto run on tablet devies and smartphones, it an be a game or a tool (e.g.alendar, GPS). An app an be free of harge or have a prie, most often in therange of 7-40 SEK, and the tablet/smartphone user an download it throughan appliation distributing system (ADS). This distributing system is typiallyoperated by the ompany that owns the operating system (OS) of the devie.BlakBerry App world, Ovi (Nokia) store, Android Market and Apple's AppStore are all examples on ADS. Sine Apple's App Store opened in 2008 thedemand for more apps has inreaed substantially and as of January 2011, Applereported over 10 billion downloads.The app we built is entitled Killer Whales, and it's an ation game wherethe user ontrols a moving objet (in this ase a killer whale). The task is tosteer the whale so that it eats small �shes (whih earns points) while avoidinglarge objets suh as boats and oil barrels. The steering is done by makingsounds - high frequenies make the whale swim upwards, and low frequeniesmake it swim downwards.To failitate the work, we used the programming toolset Xode, books onthe subjet as well as internet tutorials provided by professional and amateurapp programmers. We also used a game engine alled Coos2d, and some othertools for reating and loading graphis into the game.The Xode EnvironmentIn the 1980s, the ompany NeXT (founded by Steve Jobs) reated an objetoriented operating system alled NeXTSTEP. NeXTSTEP was the predeessorof OS X, the operating systems used on todays Mas, as well as to the iOSused on iPhone. These operating systems are all written in the objet-orientedprogramming language Objetive-C, a language similar to the language C butwith objet-oriented features, strongly in�uened from the language Smalltalk.Objetive-C is a strit superset of C, whih means that ode written in C an beinluded in Objetive-C ode, as well as ompiled using a Objetive-C ompilerwithout di�ulties.As mentioned above, iPhones use an operating system alled iOS. In Febru-ary 2008, Apple released the iOS Software Development Kit (iOS SDK, formerlyiPhone SDK), a software development kit whih makes it possible for third-partydevelopers to develop appliations for the iPhone. The development environ-ment is a suite of tools alled Xode. Xode an be used for oding, ompiling,as well as testing the appliation in an iPad- or iPhone simulator (�gure 1).The iPhone iOS has four abstration layers, providing a hierarhial stru-ture for the developers. These layers are, in hierarhial order: The Core OSlayer, the Core Servie layer, the Media layer and, at the highest level, theCooa Touh layer. All layers are reahable, but the Cooa Touh layer is themost entral for developers. Integrated into the Xode environment are theCooa frameworks, whih are libraries ontaining prebuilt ode modules. Theselibraries ontain hundreds of lasses, pakaged in frameworks suh as3

� the Foundation Kit framework (ontains the basi building bloks, forexample NSString, and ommuniation lasses),� the User Interfae Kit framework (provides the piees for the appearaneof the appliation, e.g. windows and buttons)along with other frameworks.App-making On Other Operating SystemsThere is great support for iPhone App making on Ma omputers, sine Xodeis free to download from Apple. However, it is possible to make apps underother operating systems suh as Windows, Unix or Linux based OS's. It is,however, harder to get started than if you're working on a Ma, mainly beauseXode only runs on Ma. The Objetive-C ode an be written and ompiledon any OS with a GCC ompiler.

4

Figure 1 � the Xode environment: a) shows the iPhone simulator and b)shows the oding environment
5

2 Challenges -Sound Struggles and Objetive-C ObjetionsBefore starting this projet, we faed some hallenges. Our main hallengewas the implementation of the sound input, whih seemed ompliated; anotherhallenge was our inexperiene, none of us had any prior experiene in makingapps or programming in Objetive-C.The Audio ChallengeIn our app, we want to input a sound made by the user, �nd the main frequeny,and use this as an input to our game. This should be done ontinuously, in realtime. We suspeted that this was possible to do on an iPhone, sine there existsinstrument tuners on App Store whih has the same funtionality as we needed.Other Expeted ChallengesOur next biggest hallenge arose from the fat that none of us had any priorexperiene in programming in Objetive-C, or making apps. Therefore, our planwas to dediate the �rst ouple of weeks of the projet to learn the basis ofObjetive-C and get experiene with the Xode environment. Another hallengewe thought we would fae was the time aspet; we suspeted that the time givenfor this projet wouldn't be enough to reate a feature-omplete and bug-freeapp. Therefore we set up a priority list for the app's features, to make sure thatthe most important features were implemented early in the projet.

6

3 Results -How it Turned OutDuring the �rst weeks, we got to know Xode and Objetive-C through booksand internet tutorials. Then, we started working on the app, with the followinglist priorities as a guideline:� Find a suitable game engine to use� Create a killer whale, and get it into the game� Create a bakground, and make it move bakwards (reating the illusionof the whale moving forward)� Implement the sound ontrol, so that one an ontrol the whale� Make the whale's reations to the sound �smooth�, i.e. use some sort ofmoving average funtion over the last ouple of frequenies� Add small �shes to the game� Add stationary objets lying on the seabed� Set up the ollision detetion between the objets and the whale� Set up the �Game Over� menu for when the whale ollides with a largeobjet� Set up a points earning system, and inrease number of point if the whaleeats a small �sh� Set up an air indiator bar that dereases with time, and sets �Game Over�if empty� Add a Main Menu, from whih one an go to Play, Help, High Sore orAbout� Implement a high sore� Add a base tone frequeny reader, whih lets the user set the referenefrequeny� Add sound e�ets� Make the game pausable, and set up a pause menu� Add a soundtrak� Create a system for reating di�erent levels� Set up a jumping funtion for the whaleThose main guidelines, we followed to a large extent all through the work onthe projet. 7

Tutorials and EnginesWhile gathering information on related work, we ame aross an open souregame engine alled Coos2d, whih was made for reating games on iPhone. Itseemed quite easy to use, and most importantly, it seemed to provide what wewould be needing for our game (e.g. a physis engine, a box ollision manager),so we deided to use this as a game engine. It's quite popular among iPhoneapp makers, and there's also an android app version of this game engine.Another bene�t with using Coos2d as a game engine is that we were ableto �nd lots of internet tutorials and sample ode on the internet. Xode arefrequently releasing new updates, so tutorials get outdated rather fast. However,it is quite easy to �nd good up-to-date tutorials, and these where a valuableresoure to us. There is also a large amount of sample ode available, providedboth by Apple, and by amateurs and professionals on the internet.When looking for sample ode related to the main task of the projet, on-verting sounds into frequenies and using them as a ontrolling input, we ameaross the library SCListener written by Stephen Celis. It ontains lasses thatload sounds from the mirophone, transform it using Fast Fourier Transform(FFT), and make it easily reahable from other lasses. With SCListener, onean reah the peak power, average power, and the frequeny orresponding tothe peak power (�gure 2). Sine the SCListener library is open soure, we ouldadd it to our lass library, making the frequeny and the power readily availablein our game.

Figure 2 � SCListener: The SCListener interfae. SCListener returns thepeak and average power as well as the peak frequenyImproved Audio ResponseOur idea with using audio as a ontrolling game input was that we would let theuser set a base tone frequeny, whih would be used as a referene frequenythroughout the game. During the game the user sings, whistles or hums inother frequenies; if a frequeny is higher than the base tone frequeny, thewhale swims upwards, and if it's lower it swims downwards. However, a newfrequeny is loaded approximately four time per seond, and between these timesthe frequeny might have hanged by muh. Therefore, the whale's hanges ofdiretion would beome very jumpy, unless these are smeared out in some way.We therefore investigated how the situation improved when we used di�erent8

mean value funtions. We implemented three di�erent mean value funtions:regular mean value, linear weighted mean value and exponentially weighted meanvalue. The regular mean was onstruted by adding the last n number of fre-quenies and dividing the sum by n. The weighted mean was onstruted byadding the n last frequenies multiplied by di�erent weights, whih sum up to1. The exponential mean is also a weighted mean, but the weights are expo-nentially dereasing. We found that we got a good result if we used a weightedmean value with the last three loaded frequenies (n=3), with the followingweights:
fmean = 0.50f1 + 0.33f2 + 0.17f3.where f1 is the last loaded frequeny. This reated a nie smooth motion inthe whale, without notieable loss of response time.GraphisIn addition to the written ode, a game app also needs a lot of graphis. Wedeided to do the graphis in a 3D modeling program alled Blender, a freeand open soure 3D graphis software. The most important reason for this wasthat we had good prior experiene in using this software, and little experienein using 2D graphis editors suh as Adobe Illustrator. Therefore we set up allof our graphis in three dimensions, and rendered in a way so that it wouldlook good in our 2D world (�gure 3). Although rather time onsuming, Blenderprovided a way for us to add animations to our models, as well as giving some�depth� to the graphis in general. We used Adobe Photoshop to give the graph-is the �nishing touh and the orret size, as well as setting transpareny values.

Figure 3 - Blender: a) shows the graphis in 3D, as they were done in theopen soure 3D software Blender. b) shows the resulting graphis in 2DAnother tool we used was the software Partile Designer. Partile Designeran be used to make partile e�ets in iOS games, and we used it to reate the9

bubbles in the bakground. It would've been fairly easy for us to reate bubblesourselves, but we thought that it might save us some time to use this program,sine it's very easy to use.Image Handling and Collision DetetionTwo of the programs that were used for the image handling in Xode are alledTexturePaker and VertexHelper. TexturePaker is a program that takes allthe images used in the game (.png-�les) and stores it in one single image �le(.pvr.z-�le) and one property list (p-list) whih desribes the ontents of the.pvr.z-�le. This saves memory, and it's most often used in apps.The other program, VertexHelper, is a program used in order to improve theauray of the bounding boxes of the objets in the game. Almost every gameneeds to have some sort of ollision detetion and that was the ase in our gameas well. Every objet is given a bounding box, and if di�erent objet's boundingboxes overlap at any time, it's interpreted as a ollision.The di�ulty lies in reating good bounding boxes around the objets. Our�rst implementation of this was a very simple one, though not realisti. Wegave our objets a bounding box in form of a retangle around them. Sine thebounding boxes were muh bigger than the objets the ollisions didn't lookgood (�gure 4). As a �rst attempt to improve the bounding boxes, we tried toimplement a pixel-perfet ollision algorithm. The �rst step was to hek for theregular bounding box ollision and then reating a bitmap objet with the sizeof the intersetion. After that, the basi idea was to draw the objets into thebitmap objet in di�erent olours, in our ase red and white. One of the objetswas drawn with di�erene blending whih means that if they were overlapping,the overlapping surfae would no longer be red or white, but yan instead. Thelast step was simply to hek if the bitmap objet ontained any yan and if itdid a ollision would take plae. We were able to implement this algorithm in aseparate �le, but attempts to inlude it into our game were fruitless, and aftermany tries we deided to go with a di�erent approah.The main problem with the �rst ollision algorithm was that the boundingboxes didn't have the same shape as the objets they were assigned to. Toreate better bounding boxes we had to selet the verties that would on�nethe objet. In order to initialize these bounding boxes in Xode we had to knowthe verties oordinates. These aren't easily retrieved manually, but thanks tothe program VertexHelper this proess was performed without ompliations.One restraint when reating bounding boxes was that they had to be onvex,whih meant that none of the internal angles ould be greater than 180 degrees.Therefore this algorithm was not quite as good as the pixel perfet algorithmwould have been, but it was still good.
10

Figure 4 � Bounding boxes: a) shows the unrealisti ollision between a killerwhale and the missile using the default retangular bounding box. b) shows thesame senario with an improved bounding boxBeyond the SeaBy oding, modeling and using the tools at hand, we managed to get the killerwhale to swim, as well as reat to sounds. Some seabed obstales were added, aswell as some �shes to eat. There was, however, a great deal of work left beforethe game was anywhere lose to bug-free. We had to add lots of game features,some of them simply beause a potential user would expet them. For examplea main menu with some information about the app, and a high sore funtionwhih keeps trak of points (�gure 5). A pause button whih if pressed leadsto a pause menu, as well as a winning sreen whih shows after a leared level.Also, if the iPhone user gets an inoming all while playing the game, the gameshould automatially enter pause mode. Many senarios need to be taken intoonsideration when �guring out an apps funtionalities and features, and theimplementation of these takes time.

11

Figure 5 � Menus: a) shows the main menu, b) shows the level seletion menuand) shows the Winning sreen.Some sort of soundtrak and sound e�ets are also features that a potentialuser would expet. We found the game's sound e�ets on the internet, as thereare many websites providing free-to-use sound e�ets. The sound trak onsistof a theme song, whih we made ourselves in the program GarageBand.Implementation examplesMany features of the game were hard to implement, simply beause we ouldthink of numerous ways of implementing it without being able to say whih oneof them was the best. Two examples of this is the high sore of the day feature,and the proess of adding animations.High Sore of the Day The high sore of the day feature shows some inter-esting Objetive-C ode as well as making us think about di�erent implemen-tation options. In the following ode the Settings Manager is a imported opensoure ode that is mostly used to save/load high sores and other variablesthat one wants to permanently save. Variables stored in the settings managerwill be there until the game is uninstalled or the programmer deletes them. Thefollowing ode is alled when the user �nishes a level:

12

In the 1st row the instane variable sore is ompared to the integer valuethat is urrently stored in the settings manager and assoiated with the stringname level1HighSoreOfTheDay. If sore is larger, we then update (2nd to4th row) the integer assoiated with level1HighSoreOfTheDay and sets it towhat ever value sore has. Then we put (5th row) the urrent date in a stringand store it in the settings manager. The objet df is a date objet whih weinvoke the method stringFromDate: on. The high sore of the day is thendisplayed in the level seletor sreen, and it will be reset to 0 eah new day at00:00.The reseting of the high sore of the day-value is done in the lass LevelSeletor:

In the 1st row we use the df objet just as in the previous example, to invokethe stringFromDate: method to save today's date as a string. In the 2nd rowwe ompare today's date with the high sore of the day-date using a methodthat returns true if the two dates are equal and false if they are not. If the day'saren't the same we reset the high sore of the day (5th row).It is possible to do this date omparison without using the somewhat omplexdate objets. One way is just having a ounter that uses the CPU time anddivides it by the number of seonds from the start of it, January 1st 1970.We also onsidered letting the high sore of the day last 24 hours and thenreset (independent of time of day) but in the end we though that our resultingimplementation was the most straight forward one.Animations The animations in our game were reated using Blender. Byassigning animations to the models and rendering one gets a series of .png-�leswhih make up the animation. The task is then to run the animation in Xode.The �rst thing that needed to be done before running an animation was to loadthe animation images. The following ode shows how the images for the orange�sh animation were loaded:
13

First an array was reated to hold the frames (1st row), then the images wereadded one by one. When the frames were loaded the animation was reated,
with a time delay of 0.1 seonds between eah frame. Finally you an runthe animation with the ommandwhere the CCRepeatForeverwill keep the animation running until it's beingstopped manually. There are other ways to run animations, e.g. if the imagesare not paked in a sprite sheet. However using the Coos2d provided funtions(suh as CCRepeatForever) is probably the most straight forward implementa-tion in our ase.OptimizationWhen most of the graphis, sound e�ets and audio ontrol was done and im-plemented into the game we had an initial frame rate of about 20 frames perseond (fps). This is a fairly low frame rate and the game seemed to lag a bit. Inorder to optimize this we used an analyzing tool provided by Xode to hek formemory leaks and large alloations (�gure 6). Using this tool we were able to�x all the memory leaks. However, the game performane only inreased slightlyup to 30 fps. We then used another tool provided by Xode to hek where themost omputationally heavy parts were. The �ndings were that performing theFFT in the SCListener was quite omputationally expensive sine the defaultsample rate was 44100 Samples/seond (Sa/s). The range of the human voie isapproximately 80-1100 Hz, and sine we wanted to avoid aliasing of the signala sample rate above 2200 Sa/s (twie the number of highest frequeny) wouldbe required. But we wanted to extend the frequeny range of our game to whis-tles as well. Children an whistle up to approximately 3200 Hz whih means asample rate above 6400 Sa/s would be required in order to avoid aliasing.Using this sample rate inreased the performane of our game up to 50 fpswhih is a normal frame rate for an iPhone game. As a test we tried to lower thesample rate of the SCListener down to 1000 Sa/s to see if aliasing of the signalwould somehow a�et the gameplay. It did not, in fat we ouldn't see anydistinguishable di�erene in the movement of the whale using this lower sample14

rate. The game's frame rate however was inreased to 60 fps so we thereforehose to use the lower sample rate of 1000 Sa/s.Another optimization method we used was pre-loading of graphis and sounds.Coos2d has methods for pre-loading graphis, sound e�ets and gameplay mu-si. By using these methods we were able to shorten the loading time betweenlevels to pratially nothing. However sine we load all the graphis, sound ef-fets and musi for all levels at start up it means that the start up loading timewas slightly inreased.Another memory optimization feature is the usage of sprite sheets fromTexturePaker. Loading the individual image �les for every graphis objet inthe game would be very ine�ient. By using TexturePaker the loading timeof the game dereased quite substantially (by approximately 50%) and in thesame time the memory usage was redued by 30-35%.

Figure 6 � Xode optimization tools: Xode provides tools whih failitategetting rid of memory leaks. The �gure shows the Alloations tool, whih helpswith keeping trak on memory alloations

15

4 Disussion -Plenty of Fish in Objetive-C, Now What?Along the proess of making the killer whales app we had some luk in manyregards, suh as �nding the SCListener library whih vastly redued the amountof work for us. But we also experiened setbaks in the proess.Bumps Along the WayWhile working on the app, we did not make use of a versioning �le system, i.e.a storage loation where our ode ould be uploaded and exist in old and newversions, and any one of us ould ommit hanges to the ode. A versioning �lesystem is good sine it provides the users with an easy way to always work onthe latest version of the projet. We didn't use one of these, mostly beause itwas easy for us to work on separate piees of the ode, so that our individualode hanges didn't interfere with eah other, and we ould easily update ourown odes just by e-mailing the hanges.The fat that we didn't use a versioning �le system beame very muh ap-parent when one of our omputers rashed. On that omputer, the hangesmade during the previous 2 days hadn't been saved on any other omputer orserver. Had we used a versioning �le system these ode hanges would easilyhave been retrieved. Lukily enough, we managed to retrieve the informationon the hard drive the next day, so there was no major harm done.What Lies AheadHopefully we will get the game up on app store. Before we do this we'll have tobuild more levels, at the moment there are only two levels. Levels are one of theelements that make the game fun to play, so we'll probably have to spend sometime and thought on this. Making sure that the game is fun to play is probablythe most important thing next to making it bug free, so we intend to designnew funtionalities and features for the game to add exitement to the game.Finalizing the game will be a fairly long proess, but one of the most importantnot to rush through. Sine we put muh work into building it, we'll now do ourbest to make sure that the resulting app turns out the way we planned.

16

5 List of Open Soure Libraries� �How to make a spae shooter for iPhone� by Ray WenderlihProvided us with some of the basi features in our game, e.g. moving the whaleforward.http://www.raywenderlih.om/3611/how-to-make-a-spae-shooter-iphone-game� �Settings Manager� by Rob SegalUsed for saving and loading funtions, e.g. save/load high sore.http://getsetgames.om/2009/10/07/saving-and-loading-user-data-and-preferenes/� �Coos2d� by Zynga TeamUsed as the game engine for our game. Helped us with reating bounding boxesaround objets for ollision heks as well as provided us with a fully funtionalphysis engine.http://www.oos2d-iphone.org/� �SCListener� by Stephen CelisUsed for performing the Fast Fourier Transform on the sound made by the user.https://github.om/stephenelis/s_listenerReferenes[1℄ Goldstein, Manning, Butt�eld-Addison � �iPhone & iPad Game Develop-ment for Dummies�, Wiley Publishing 2011[2℄ Piper � �Learn Xode Tools for Ma OS X and iPhone Development�, Apress2009[3℄ Hokenberry � �iPhone App Development - the missing manual�, O'Reilly2010[4℄ Fairbairn, Fahrenkrug, Ru�enah � �Objetive-C fundamentals�, Manning2011

17

