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Abstract

We propose a novel automatic binning strategy for Visual Predic-
tive Checks that mainly improves the automatic selection of the num-
ber of bins. Binning, given the number of bins, is performed starting
from the construction of a data density function which is used in a
optimization criteria to place bin boundaries where data is less dense
in order to avoid splitting clusters of measured data into different bins.
A simple but effective method for choosing the number of bins is also
presented which is an important part of the algorithms performance.
The proposed algorithm is demonstrated on various datasets, which
were evaluated by senior modelers.

Keywords: Pharmacometrics, VPC, Visual Predictive Checks, Auto-
matic binning

1 Background

Modeling and simulation of drug uptake, effects and elimination, so-called
PKPD (Pharmacokinetic/Pharmacodynamic) modeling is becoming increas-
ingly important in drug development. It integrates a pharmacokinetic and
a pharmacodynamic model component into one set of mathematical expres-
sions that enables the description of the time course of effect intensity in
response to administration of a drug dose.

When a pharmaceutical company has used PKPD-modeling as part of
the drug development process, diagnostics of the model must be included in
the submission to the American Food and Drug Administration (FDA).

Visual Predictive Check (VPC) is one such method for model diagnos-
tics. However, FDA is suspicious towards VPCs because the modelers must
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often manually bin the measured data and the choice of binning will af-
fect the results of the diagnostic test. Because of this, FDA argues that by
tweaking the binning also bad models could be made to look good. Binning
the data is also very time consuming. It is therefore highly desirable for
the pharmaceutical companies to have a completely automatic binning per-
formed by an algorithm which is defined before the actual data is collected
and the model is built.

2 What is VPC?

Visual Predictive Check (VPC) is a popular method for evaluating non-
linear mixed effects models in pharmacometrics. It shows how well simulated
data from a proposed model agree with measured data and hence if the
model accurately describes the studied population and biological process.
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Figure 1: Explanation of how VPCs are created



The VPC method starts out from a model that describes some property
of a drug in the human body. This property could for instance be how
the drug concentration varies over time in the blood. Several sets of data
are simulated from this model. The measured data, Figure 1(a) is then
grouped into time intervals, the data is binned. This is illustrated in 1(b).
In this particular case, the procedure is trivial due to well-structured data.
Normally it can very be difficult to see how an appropriate binning should be
performed. From the binning the median and the percentiles are calculated
for each time interval, Figure 1(c). In the next step several sets of data is
simulated from the proposed model. Confidence intervals are then calculated
for these medians and percentiles. Finally the median and the percentiles of
the measured data are plotted together with the confidence intervals from
the model (Figure 1(d)) which allows an evaluation of the correspondence
between the measurements and the model. In this case it can be seen that
the model correctly describes the measured data since the median and the
percentiles are located inside the confidence intervals.

The reason for VPCs popularity is that the idea behind the diagnostic
is simple and easily communicated to both modelers and other model stake-
holders and by the retention of the original time-course profile and the y-axis
units, the VPC graphs are illustrated on a relevant and easily appreciated
time scale which can be powerful in guiding the modeler to the origin of a
potential model misspecification [1].

3 Objectives

e In cooperation with modelers, define mathematical criteria to deter-
mine what is considered to be a good binning result.

e Implement a binning method that minimizes these criteria.

e Compare the performance of our method with the method recently
proposed by M. Lavielle & K. Bleakley [2].

4 Desired binning characteristics

As far as we know, there has not yet been proposed any measure for what
constitute a good binning and we had no data sets with ground truth at
hand for our experiments. Therefore interviews with modelers that work
with VPCs regulary were carried out. They revealed the following desired
characteristics of how binning should be performed in order to get a good
VPC:

e The median curve should look physiological. That is, the curve should
be smooth.



e Distinct clusters of measurements should not be split into different
bins.

e The binning should capture changes of the dependent variable (the
y-variable).

e Fulfilling the above characteristics, the bins should have as similar
amount of data points as possible.

Also to be able to calculate the percentiles, each bin needs a certain number
of points (usually any bin with less than 10 points would create confidence
intervals so large that they don’t contribute to the VPC).

5 Existing methods for binning in VPC

In this section a description of some of the existing automatic methods for
binning data is given. However, manual binning is still the most common
method. This indicates that before the recent work of M. Lavielle & K.
Bleakley [2] there was no existing automatic method that worked satisfy-

ingly.

5.1 Equal width binning

The equal width binning method is the simplest method of binning where
the time domain is divided into, as the name suggest, subintervals of equal
width. The user specifies the number of bins K as input and the algorithm
divides the interval into K subintervals of equal width.

In mathematical terms this can be written as: given K bins, the width
of each bin h is calculated as

tmaa: - tmin
h=—— 1
- 1)
It is obvious that this method will perform poorly when the data is not

evenly distributed and can in the most extreme case have several empty bins
because it does not take the actual distribution into account.

5.2 Equal size binning

Equal size binning puts the same number of points in each bin. In this case
also the number of bins has to be specified by the user. Given the number
of bins K and the total number of points n, ideally each bin should contain
n
— 2
= )

number of points. In general however, n is not a multiple of K, so some of
the bins must contain either [n/K | or [n/K| + 1 points.



If we have many measurements at the same time points but the number
of measurements is different between the time points this method breaks
down. Instead of looking for an equal size binning we can look for a similar
size binning. Let t; < t2 < ... < t, be the P different time points and
mi, Mo, ...,mp the number of measurements taken at each of these time
points. For a given number of bins K, we are looking for the set of bins
I = (I, Is,...,Ix) that minimizes

i > (mi- %) (3)

where

Using similar instead of equal bin size results in a method that perform
relatively well. However if the data is ” clustered” around various time points,
this approach does not provide a plausible binning since no consideration is
taken to the clustered structure of the data. This results in that clusters of
measurements are most likely to be split into different bins.

5.3 Modified K-means

In a recent article by M. Lavielle & K. Bleakley [2], a new method for
automatic binning was proposed. It aims at resolving the issues with the
two above stated methods by incorporating ” cluster-awareness”.

5.3.1 Placing the bins

M. Lavielle & K. Bleakleys method takes it’s starting point from the well-
known K-means algorithm [4] which, given a set of observations (x1, x2, ..., T,)
aims to partition the n observations into K sets, S = (51,52, ..., Sk) so as
to minimize the within-cluster sum of squares defined as follows:

arg}ininz Z (tj — )% (4)

This is a clustering method for arbitrary dimensions but for the purpose
of binning, only the 1D case is considered. How eq. 4 is minimized is
explained in the appendix, section A.

The K-means algorithm works well when dealing with a model having
the same variance, that is, the spread of the data inside of each cluster is
similar. M. Lavielle & K. Bleakley argued that it doesn’t work as well when
the spread of the data inside of each cluster varies, and gave an example for



when their method performs poorly (Figure 2(a)). In order to handle this
they generalize the minimization criterion (eq. 4) and propose the following
criterion:

=

Jopt,p(1) = Y ni(0})” (5)

k=1
where 5 € (0,1] and

1 _
2 2
Uk:*Z(tj—tk) : (6)
n
J€ly
We note that in the case when § = 1 we have the minimizing criterion
of the K-means algorithm. By letting 8 approach 0, more emphasis is made

on selecting bins with different variability.

5.3.2 Choosing the number of bins

M. Lavielle & K. Blekley propose a model selection approach with the fol-
lowing penalized criteria:

U(L,A) = log(Jopt,s(I)) + ABK(I). (7)

where K(I) is the number of bins in binning I. They choose I so that
U(I,)) is minimized for a fixed A.

A larger A\ means fewer bins. After extensive numerical trials they sug-
gest that A = 0.3.

6 Binning Method

We also base our method on minimizing (4). As we described earlier this
method is good in cases where the data consists of clusters of measurements
with similar variances. In general, this is not the case for our data and the
method could split a cluster of measurements into different bins where the
variability is high while merging two clusters of measurements into the same
bin where the variability is low as shown in Figure 2(a).

The problem is solved by adding a penalty term to the K-means mini-
mization criteria, which penalizes adding a bin where the data is dense. Let
W be the within-group variability:

Wy = Z(xz — :i’k)Q. (8)

i€y,
where z; is the coordinate of the independent variable for data point i and

T is the mean in bin k:
_ 1
T = — E (i) (9)



Then, given the bin edges e = (ez, €3, ..., ex’) we want to minimize!

K K
ZWk+aZ¢(ei) (10)
=1 i—2

where « is a scaling parameter and ¢ is a data density function.

6.1 Data density function ¢

The data density function ¢ is obtained by kernel density estimation using
a Gaussian kernel [3]. That is, a Gaussian density function is placed at each
data point, and the sum of the density functions is computed over the range

of the data, i.e
1 & T —x;
() = — gl Kernel < - ) (11)

where

Kernel(z) = ! e /2 (12)

is the Kernel.

If the data consists of clusters with an equal amount of measurements
ny from Gaussian distributions with the same standard deviation o, the
optimal bandwidth for the Gaussian kernel is [3]:

4 \? ~1/5 ~1/5

h=o () ~ 1.060n, '~ ~on; .
3N

where the final approximation results in a slightly smaller bandwidth which

increases the resolution slightly, when the distribution is not perfectly Gaus-

sian. For our purposes this bandwidth works well for measurements dis-

tributed in any bell-shaped manner.

If the data consists of K sets of Gaussian distributed measurements
(X1, Xo, ..., Xk) with different unknown standard deviations (o1, 09, ...,0k)
a single bandwidth will be either too narrow or too wide. If the bandwidth
is too narrow it will split clusters of measurements where the variance is
big and if it is too wide it will result in measurements with small variance
being merged with neighboring clusters of measurements. To address this
problem we make use of a per bin adaptive bandwidth.

Let hy, = opny,/° k= 1,2, .., K, then ideally we would like ¢ to be:

K
1 Tr— T
¢ideal($) = Z rkhk Z Kernel < hk, )

k=1 z;€Xg

'subject to the constraint that ny > 10 Vk



but since we don’t know which x; belongs to which Xj; we can’t obtain
¢. However, we can get a usable ¢ by doing an initial binning Iy =
({01, 10,2, .10, k) that tries to group each X}, into a separate bin and de-

fine:
K 1 T — T;
T) = Kernel ! 13
o= T (52 (13)

:EZ'EIQ’]C

In all of our experiments we use the K-means algorithm to obtain the binning
Iy.

We also compensate for the inaccuracy of our first solution by doing an
analysis in those bins that have data from more than one cluster of mea-
surements. To do so we look at the kurtosis (the measure of ”peakedness”)
defined as W2 /0. Gaussian distributed data has a kurtosis of 3. If a bin
contains data from more that one cluster of measurements the kurtosis will
resemble the one of the discrete uniform distribution which has a kurtosis in
the interval [1, 1.8) (the continuous uniform distribution having a kurtosis
of 1.8). If the kurtosis indicated the data is more spread out in a bin than
if there were a single Gaussian distribution we want a smaller bandwidth
to resolve the fine structure of the data density. Thus we condition the
bandwidth such that

-1/5
hy = UO,k”o,k/ Wiilog, > C
= ~1/5
%UO,WOJ;/ We /o0, < C
where R > 1, and C € (1.8,3). (We used R = 4 and C' = 2.5 in our
experiments).

6.2 Scale factor a

The method to minimize (10) can be written in short notation as
Minimize W + a® (14)

Note that by the definition of ®, having K clusters of data with a decent
pre-binning with K bins, the local maximums of ¢ will be approximately of
size 1. This can for example be seen in Figure 2(b). To relate W with ® in
the objective function a = C' maxy, Wy, was used as the scale factor. Wy
is here the disparity of bin k from the initial run and C a constant that was
empirically determined to 7.8 for best results. The resulting binning of the
final method can be seen in Figure 2(c).

6.3 Effect of the data density function

In Figure 2 the effect of the data density function is illustrated. Without
the data density function only the K-means objective function is considered.
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Figure 2: The effect of the potential function

In Figure 2(a) the last cluster has much spread and K-means undesirably
splits it into two bins. Applying the data density function on this binning
gives a contribution to the objective function which penalizes the algorithm
in placing the bin on that location (Figure 2(b)). Instead the bin is placed
so that the first two clusters are separated (Figure 2(c)). The binning now
better corresponds to the desired binning characteristics of the modelers.

6.4 Taking the dependent variable into account

One of the desired binning characteristics from the modelers was to cap-
ture changes in the dependent variable y. Even though the data is dense
somewhere we might want to place a bin there if there is a big change in
y. Therefore we considered Ay = |yx — yk—1| (where gy is the mean of the
dependent variable in bin k) and incorporated it into our method as either



K K

Minimize W + « Z o(e;) — Z f(A) (15)
or 1=2 i} =2
L (ei)

Minimize W + « ; f(Aezy) (16)

to penalize less when there is a big change in y. We have tried numerous
functions and what seemed to work best was the function

P(e;)
1+ in(Ay + 1)

K
Minimize W + o) (17)
i=2
as the value never goes below W and the logarithmic function attenuates
large changes in Agy.
Several other f(Agy) where considered and are presented in Section C
together with some comments on why they didn’t work. However, the gen-
eral problem is illustrated in Figure 3.
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Figure 3: Shows the problem with taking the independent variable into
account. Local variations in y causes our ’
clusters in an unwanted way.

y-aware” algorithms to split

The problem has to do with the scale. On a large scale it is obvious that
the splitting of the second cluster is unwanted, however on a small scale this
is not obvious anymore. The mean of the dependent variable (y-direction)
of the two clusters is different and thus the clusters should be separated.
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6.5 Summary

To summarize this section, the methods that will be evaluated in Section 8
are the following:

Method1l : Minimize W + a®

o(ei)
1+1In(Ajy+1)

K
Method?2 : Minimize W + « Z
=2

7 Minimization method & estimation of the num-
ber of bins

The algorithm seeks to place out K bins in a way such that the objective
function is minimized. To avoid having initial bins violating the minimal
number of data points in each bin constraint, the equal size method with
the same constraint is used as the initial guess. It can be computed very
fast and gives a good starting point. We have not noticed any difference in
result using different initial guesses, however an initial value that resembles
the final result makes the algorithm converge faster.

To make the minimization algorithm more efficient, instead of minimiz-
ing the within-cluster variability W, the total variability T" minus the be-
tween cluster variabiliy B was minimized. This simplification is possible
since the total variability equals 7= W + B [6]. The different variabilities
are defined as

T=> (2i—z)(z; — 7)" (18)
=1

K ng
W =>"> (am — 2) (wr — 2n)" (19)
=11=1
K
B=> np(zp —z)(z — 3)7, (20)
k=1
7 :% o (21)

and xj; is the x value in the [ : th point in bin k£ and nj is the number
of points in bin k.

11



Algorithm 1 Minimization Algorithm
Continue optimization until the following stop criteria is fulfilled:

1. No bin boundary can favorably be moved between its two neighbors.

2. No bin boundary can favorably be moved in-between any two other
bin boundaries.

Part I of the optimization

Try moving the bin edges one by one within its two neighbors to decrease
the objective function.

Step 1:

Choose the bin edge that gives the biggest decrease (or smallest increase)
when being moved one step to the left or right. Then calculate the objective
function for every possible position between the two neighbour bin edges
and move it where it is lowest.

Step 2:

Mark the moved bin edge as updated so that it can’t be moved again unless
any edge is moved first.

Step 3:

If a bin edge has been moved, update the neighboring bin edges so that
they can be moved again.

Part II of the optimization

Try taking out the bin edges one by one and placing them in between two
other bin edges to decrease the objective function

Step 1:

Calculate the increase in the objective function for removing any of the
bin edges. Also calculate the decrease in the objective for adding an extra
between bin edge between any two consecutive bin edges.

Step 2:

If there is any move of a boundary that results in a decreased objective
function, perform the movement that results in the largest decrease and go
back to PART I, else stop.

12



7.1 Choosing the number of bins

Determining the number of bins in the data is an important problem. It
affects the resolution of the VPC and hence, also point 1 in the desired
binning characteristics. In some cases the number of bins is obvious, which
is the case in Figure 1. In general this is not the case and the number of bins
must be estimated by the user of the VPC based on some prior knowledge
of the data or estimated somehow. Since we want a fully automatic binning
we need a method that does this for us.

A simple and direct strategy would be to use our objective functions (eq.
14 and eq. 17 ) not only to place our bins but also to estimate the number
of bins. For our two methods presented in the previous section, we then get
the following:

arg;nin W(K) + ®(K) (22)

Ay + 1) (23)
After trials we could conclude that this way of estimating the number of
bins works well when incorporating y while it has a tendency to underesti-
mate the number of bins when only considering the independent variable.
There exists a variety of methods to estimate the number of bins. In
an article written by G. Milligan & M. Cooper [5] different methods of
estimating the number of clusters have been evaluated. The method that in
general outperformed the others was the Calinski and Harabaszs method,

BJ(K — 1)
arg[r(nax Win—K) (24)

argmin W(K) + « i oei)
K i—2 1+ ln(

where B is defined in eq. 20.

Tests of this method gave good results on most but not all data sets
when using Method 1. It had a tendency to overestimate the number of
bins. It performed worse when incorporating y, that is, Method 2.

Because our first approach to use the objective function had a tendency
to underestimate the number of bins and the Calinski & Harbaszs method
had the opposite tendency the quotient was tested:

. N B/(K —1)
e W= K)

In many of the cases where the data was well separated both the objective
function and the Calinski & Harbaszs method gave the same result which
coincides with the results of eq. (25). In the cases where they gave different
results eq. (25) weighted the two methods in a way that the estimation of
the number of bins gave a good result on the data sets used for method
development.

/(W + ad). (25)
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8 Result

We have implemented the proposed methods in Matlab. Ten data sets were
used for validation. The parameters in our methods were chosen based
on experiments on only the training data and were kept fixed during the
validation. For M. Lavielles & K. Bleakleys method, Monolix was used with
its standard parameters. The performance of our methods and M. Lavielles
& K. Bleakleys method was visually evaluated by some of the modelers we
interviewed for the desired binning characteristics. The evaluation was made
on Method 1 with eq. (25) for estimating the number of bins and Method 2
with eq. (23).

Firstly the data sets were binned by the different methods. Then the
binnings were used to make the VPCs. Finally the VPCs were sent to the
modelers for evaluation. In their opinion method 1 gave rise to a binning
that definitely was useful. The performance of Method 1 was similar to that
of M. Lavielles & K. Bleakleys while Method 2 captured too much local
variation.

In Figure 4 the first of the validation data is shown. Looking at the
data one can see that there is no obvious way to do the binning. This is
the reason we needed the help from the modelers in order to evaluate the
methods. The major reason for the methods to performe so differently were
that the number of bins were choosen differently. M. Lavielle & K. Bleakleys
method chooses much more bins which results in an irregular median of the
VPC, Figure 4(f). The modelers argue that this is not motivated by the
data since the overall changes are also captured by Method 1 and 2 with
much fewer bins. In this particular case the modelers regarded Method 1
as the best followed by Method 2. M. Lavielles & K. Bleakleys method did
not perform well on this data.

In Figure 5 we show a second data set. In this particular case M. Lavielles
& K. Bleakleys method chooses fewer bins than our two methods so the
results of the methods on this data set are quite opposite of the previous.
In this case the modelers regarded M. Lavielles & K. Bleakleys method as
better.

14
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Figure 4: VPCs and binning created of the different methods. The data is
from the article ” Clinical pharmacokinetics of irinotecan and its metabolites:
A population analysis”
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Figure 5: VPCs and binning created of the different methods. The model
is an example of a 2-compartment PK model

9 Discussion

From the validation sets we were given and the evaluation given by the
modelers it is hard to draw rigid conclusions. Partly because the feedback
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Figure 6: VPCs and binning comparison between Method 1 & M. Lavielles
& K. Bleakleys method for a fixed number of bins.

consist of subjective opinions and partly because we cannot be sure that
the data sets used in our validation represents the majority of data sets
generated in drug development.

It seems that our Method 1 performs similar to the method of M. Lavielle
& K. Bleakley. The major difference between them is how they estimate the
number of bins. Method 1 performed best at some of the data sets and M.
Lavielles & K. Bleakleys on the others. Method 2, that incorporated the
dependent variable were not as good as the other two methods.

Also during the testing before the final validation we realized that Method
1 and M. Lavielles & K. Bleakley with a fixed number of bins gave very sim-
ilar results for most of the data sets that we had at hand. In Figure 6 we
show the resulting VPC of one of these data sets. As one can see, the re-
sults are very similar. The two methods do not place the bins at the exact
same position but the differences are so small that it is difficult to see any
differences between the two VPCs.

After the evaluation by the modelers and from our own experience it
seems our method for choosing the number of bins for method 1 is more

17



robust than M. Lavielles & K. Bleakleys method. Only in very few cases
(if any) the estimated number of bins of Method 1 is far away from what a
manual estimation would produce while M. Lavielles & K. Bleakleys method
for some data sets clearly overestimated the number of bins.

During the development of Method 2 we realized that it is problematic to
make the objective function dependent on variations in y. What we wanted
to do was taking global variations in y into account to better adjust the
binning to the specific behavior of the drug. But what we often ended up
doing was bringing out local variations in y. This resulted in non-smooth
median and percentile curves in the VPC. The same problem occurred for
all of our methods incorporating awareness for variations in y. We would
therefore like to rule out objective functions on the form of (15) and (16).

Generally, when the methods performed poorly they overestimated the
number of bins which led to a too high resolution in the VPC which resulted
in an unphysiological median curve. So if one wishes to improve any of
these methods any further, it might be a good idea to focus on the way they
determine the number of bins.

After the evaluation of the methods it has become more clear that fewer
bins are often more desirable. There is a discrepancy for what could be
considered a natural binning and what looks good in the VPC. Our method
for estimating the number of bins was developed perhaps with too little
consideration of the final VPC. This is mostly due to the lengthy process of
creating VPCs when developing our methods.

9.1 Minimizing M. Lavielles & K. Bleakleys objective func-
tion using our minimization algorithm

In an earlier version of our minimization algorithm, we implemented the
objective function by M. Lavielles & K. Bleakley. But when we further de-
veloped our minimization algorithm we did not update this implementation.
The reason for this was that we had started using the software Monolix which
has a complete implementation of M. Lavielles & K. Bleakley as described
in their article [2].

However, M. Lavielles & K. Bleakleys objective function can still be
implemented rather easily in our minimization algorithm. Starting out from
Method 1, the data density function has to be removed. Furthermore the
calculated between cluster variance has to be replaced by the within cluster
variance but altered according to (6). Also equation (5) must be taken into
consideration when calculating the final objective function value at the end
of our minimization algorithm. Finally a new function must be written to
go through the desired K values to find the appropriate number of bins.
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9.2 Needed interactivity for our methods

Our two methods cannot be considered as fully automatic in their current
state since they do not handle all data sets in an appropriate manner. It is
therefore desirable to have some kind of interactivity of the methods when
they are further implemented in PsN. We believe that the number of bins
is the most important parameter to be able to tweak and play with in that
case. The number of minimum points in each bin could also be a good
variable to let the user change. Although it may not always affect the result
that much, it can be important if one wants to avoid getting bins with too
large confidence intervals for the median and the percentiles. We also have
the parameter « in the objective function which can be changed to alter how
much the data density function effects the final result. However we do not
believe that this parameter adds that much to the user interactivity and it
is neither apparent how this variable affects the binning.

Another element that could be implemented for better results is the pos-
sibility to choose to perform the binning on the altered data set where the
independent variable values have been transformed so that their values is
equal to the natural logarithm of their earlier value. The resulting bin edge
can then be transformed back to the correct position by taking e to the
power of the different bin edge values. This is a useful approach when the
independent variable is the time and the sampling is done at increasingly
longer intervals. In Figure 7 the effect of taking the logarithm of the inde-
pendent variable values is presented in a case where the data set have an
advantageous distribution for doing this. As can be seen, the new binning
better captures the variation in the dependent variable for small time values.

T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120

(a) Method 1 binning (b) Method 1 binning when the logarithm
has been taken of the independent variable
values

Figure 7: Effect of taking the logarithm of the independent variable values
on a specific data set
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9.3 Future work

Here we present some of our considerations and ideas on how to improve
our methods that were not implemented due to time constraints or other
difficulties.

9.3.1 Measure of the binning quality

Evaluation by the modelers can be very subjective and therefore an objective
measure for what constitutes a good binning would be desirable. In the
beginning of the project we developed an idea for how this could be done.

Usually when making a VPC, the VPC calls a program called NON-
MEM which, as input, takes the time points from the measured data and
with the mathematical model simulates several data sets. Instead of feeding
NONMEM with only the time points from which measures have been done
we could also make our own input. By making the time steps small enough,
a true distribution could be simulated (true of the mathematical model).
From this distribution we then would calculate the ”true” median.

We then proceed by making a simulation from the measured time points
and apply the binning methods on this data. From the binning we calculate
the median. This median is then compared to the ”true” median of the
distribution. This would then constitute a measure for how good the binning
is.

We abandoned this approach early due to problems in making simula-
tions of the true distribution. This was due to that the models often had
covariates whose distribution was unknown and also due to the fact that it
was very time consuming. However, we still think that this approach would
constitute a good measure for the binning quality.

9.3.2 How to measure the smoothness of a curve

The second derivative tells something about the local curvature of a curve.?

If we integrate the absolute value of the second derivative we get a measure
for how curved the curve is.
Tmax
[ W@
x

min

A straight line will have a value of 0 while a zigzagged curve will have a very
large value. A discrete approximation is:

K-1

D

1=2

y(@iv1) —y(z)  y(z) — y(@i-1)
Tit1 — T4 T — Ti—1

2Curvature is given by: & = |y”|/(1 +y'*)3/?
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with y(z;) being the median in bin i. It might be possible to analyze the
value of this measure to determine a suitable amount of bins. However, if we
use this directly in the optimization criteria for placing the bin boundaries
it will make the median curve to look more linear and less curved than it
necessarily is.

10 Summary and conclusions

Both Method 1 and M. Lavielles & K. Bleakleys method are steps in the
right direction of creating automatic binning in VPCs. The results from our
Method 1 were considered as ”definitely useful” by the modelers and will
hopefully ease their work in terms of better diagnostics and less hours spent
in creating VPCs.

Incorporating variations in the dependent variable was dismissed since
it did not give any meaningful results.
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Appendix

A K-means algorithm

Algorithm 2 K-means Algorithm

Given an initial set of k means m = (m},mi, ..., m,lg) the algorithm proceeds
by alternating between two steps:

Assignment step: Assign each observation to the cluster with the
closest mean. Si(t) = {zp: ||zp — mgt)H <|lzp — mg-t)H V1<j<k}

Update step: Calculate the new means to be the centroid of the

. . (t+1) _ 1 )
observations in the cluster. m; =50 ijesi(t) xj

Repeat: Until no changes can be made in the assignment step.

B Matlab code

The following matlab code files have been supplied with this report.

* readFromFile.m - function that reads in data generated from PsN into

matlab

arrayToText.m - function that transforms an array of number into a
string

firstMethod.m - implementation of our first method
secondMethod.m - implementation of our second method

chooseKFirst.m - function that chooses the number of bin for our first
method

chooseKSecond.m - function that chooses the number of bin for our
second method

gaussFilter.m - implementation of gauss filter used for smoothing

indexToldv.m - index handling function used by firstMethod.m and
secondMethod.m
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* plotBins.m - function that plots the edges of the bins together with
the data

* saveCommand.m - function that generates the new command line for

PsN
* HowToRun.m - example file of how the matlab files should be used

An example of a data set has also been supplied together with files. How
this data can be binned with these functions is examplified in HowToRun.m
For more information, see the comments in the code.

C Abandoned methods

Many methods where the dependent variable y was incorporated were tried
out. However, most of them were abandoned since the results did not look
promising. Some of the methods below are clustering techniques meant for
2D-clustering and they are not appropriate for 1D-binning. B, W, and T are
defined in eq. 20, eq, 19 and 18 respectively for all the following methods.

Method 3

(Considered first.) It was motivated from the article of M. Lavielle & K.
Bleakley. The objective function for this method is:

Minimize —.
B

Method 4
The covariance was also tried:
K
Minimize — Z B12,kBll,k ==
k=1
K
= Minimize — ZNk‘TIQ — (wz — i'k)(yz - gk)’(Tn — (mz — .’i‘k)Q)
k1

Method 5
Minimize tr(BW 1)
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Method 6
Minimize tr(W) = Wiy + Way
which is calculated by minimizing

K

—Bi — By = > —Ni((wi — T)” + (i — )°)-
k=1

Method 7
As Method 5 but applies scaling

i N, <($z’ — 7p)° L Wis :Uk)2>
1 Wy Wy

Method 8

This method is a further development of the equal size method. The equal
size method is equivalent to integrating the number of data points and
putting out a bin edge at every place where the integral passes a value which
is a multiple of the total number of data points divided by the number of
desired bins.

The idea was then to multiply the number of data points at each unique
independent value with some measure of how much the dependent value was
changing in that point. We used different ways of defining this measure.

* Take the M closest points alternatively the points that lie within dis-
tance D of every unique idv value. Then fit a line to those data point
and use the slope of the line as a measure of the local change in the
dv value. Finally, adjust the number of data points at the unique idv
value with that measure.

Calculate the mean dv value for every unique idv value. Then we
translated this value to a grid with higher resolution than the current
one consisting only of the unique idv values. The mean dv values were
now smoothed out with a gaussian window of appropriate size (the
size was problematic to chose). After this has been done a derivative
of each unique idv value could be calculated by taking taking the dv
difference between the point directly to the left and the right of each
point corresponging to a unique idv value in the new grid. This gave
us a measure that was used to adjust the integrand (the number of
data points at each idv value).
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Method 9

This method started out by creating a bin for every unique idv value. The
two closest bins in the idv direction were then merged together until only
M bins were remaining, where M > K. M = 2K were mainly used. The
two closest were now merged according to a different distance measure until
the remaing number of bins were K. The different distances between two
neighbouring bins used were

* Distance defined as the shortest distance from any point in the first
bin to any point in the other bin. Motivation: To see if this gave any
other result than the normal distance measure.

* Distance in idv direction between the two bin centers multiplied by the
current minimum number of data point in the two bins. Motivation:
Try getting bins with similar number of data points.

* Euclidean distance between the bin centers. Motivation: incorporate
variation in the dependent variable.

* Euclidean distance between the bin centers where the dv component
was diminished. Motivation: diminsh the effect of the variations in
the dependent variable.
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