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Abstract 

 

 

Quantum molecular dynamics explains the time-evolution of a chemical system by solving 

the Schrödinger equation, it provides a complete information at an atomic level. The 

numerical approximation of the solution of the time-dependent Schrödinger equation is 

discussed in this work. The main purpose is, given a set of grid points, to find a method that 

minimizes the discretization error. Different methods have been suggested in various 

quantum molecular studies. In this study we focus on the spectral differences method, since it 

can solve differential equations by accelerating the summation of the numerical derivatives to 

produce a matrix representation with two important properties, such as exponential 

convergence and sparsity. We study spectral differences method when it`s weight is 

generated by Gegenbauer polynomial and compare it with three other methods. 
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1. Introduction 
 

Quantum Molecular Dynamics 

It is very important for scientists to know what happens to materials under extreme conditions. An 

accurate look is needed at what happens to individual atoms and molecules during experiments. 

Simulations based on quantum molecular dynamics make it possible to view experimental activity as 

it happens. Classical molecular dynamics is concerned with the classical motion of atoms interacting 

with a given potential, but the interesting chemistry and physics of many molecules take place at the 

atomic and subatomic level. Quantum molecular dynamics focuses on the interactions between atoms 

and electrons. The properties of the materials which cannot be measured easily by experiments are 

predicted by quantum simulations. Quantum molecular dynamic simulations are able to provide 

accurate information on the properties of materials in extreme conditions (high temperature or high 

pressure) which are not easy or even impossible to achieve experimentally.  

The equation that molecular properties (chemical properties, physical properties and structural 

properties of molecule) are derived from is the Schrödinger equation,   
 

  
                where 

  is the wave function, and    is the Hamiltonian operator, which includes terms for potential and 

kinetic energy. Nuclei are much heavier than electrons and they move slowly so in molecular systems 

we can assume that electrons are moving in a field of fixed nuclei. We use this assumption in 

Schrödinger equation to values of effective electronic energy which is dependent on relative nuclear 

coordinates. When the nuclei are moved to new coordinates, molecular energies are calculated again, 

this is the description of potential energy surface for the molecule. In addition, structural and dynamic 

data from molecular dynamics provide accurate insights into the binding affinities, mobility and 

stability of proteins and nucleic acids that we are not able to get from static model.  

 

The starting point for our project is the solution of the time-dependent Schrödinger equation in 

one dimension on one potential energy surface. The wave function of a system evolves in time 

according to the time-dependent Schrödinger equation:  

  
 

  
        

  

  

  

   
                   

In this equation, the state of a quantum mechanical system is completely specified by the wave 

function        that depends on  space and time, and m is the mass of the particle,   is the reduced 

Planck constant, and V(X) is a real function representing the potential energy surface of the system. 

We look for numerical solutions for        ,which contain all the necessary information about  the 

dynamic system. In the Schrödinger representation, the wave function is time dependent but the 

operators are time independent. In our study we first use finite difference methods for space 

discretization and then apply the Crank-Nicolson method and Lanczos iteration algorithm for the time 

evolution. Next, we implement the spectral differences method to approximate derivatives accurately 

on a given grid points by using Gegenbauer weight polynomial. Computing the discretization error 
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for the different methods is considered. As a reference solution we use that, obtained by the Sinc-

DVR method to discretize in space and Lanczos iterations for the time discretization. 

Each method that we implement for spatial discretization generates a differentiation matrix D which 

approximates  
  

          , and     
  

  

  

         . So, the sparsity of the matrix D is important,  

since it is related to the time of our implementation and also the accuracy of the solution is dependent 

on the approximation of D matrix, In fact with better approximation of D we will have more accurate 

solution. 

 

1. Solving the equation  

We start with Crank-Nicolson scheme for time discretization and second order central finite 

difference method for spatial discretization. 

The finite difference discretization of the time-dependent Schrodinger equation is rather 

straightforward. We discretize the spatial part of the equation, as follows,   

      

   
    

 
     

     
      

  
   

By using Crank-Nicolson Scheme to construct time discretization: 

  
   

    
       

  

 
 = 

 

 
 
  

  

          

         

          

         
   

      

     
  

          

       

        

       
   

  
 

  

 

Denote      
 

 

  
   

                
  

     

Then, by substitution we obtain the fully discretized system :  
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In matrix form we have:  

   
  

   
  

 

 
 

  

  

 
    

   

 
 

    

    
  

   
  

 

 
 

  

  

 
    

   

 
 

  

 

                   

 

    
  

    ,         
  

      

We denote           , where I is the identity matrix of proper size. So, the matrix representation 

of one dimension Hamiltonian in discrete space is given by 

 

 

2. Implementation of Sinc-DVR scheme  

 

 

One of the most useful methods to estimate unknown values which are within the range of a discrete 

set of points, is interpolation. For an unknown function      with given data points {(        )}, 

interpolation can estimate the value       . Here      is the interpolant of      and it is defined as 

         
 
        . It is usually convenient to introduce a set of basis functions       . 

In fact       are cardinal functions and satisfy            , referred to as the cardinality condition. 

Now the interpolation of      is represented by  

                 
 

   
 

In second method we focus on interpolation based on sinc functions. The sinc function is defined by  
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The integral form of the sinc function has the following form: 

        
 

  
             

 

  

 

 

We can derive the orthogonality  of translated sinc functions  

                    
 

  

 

  

                    

 

  

 

j is an integer and, the Sinc interpolating functions is defined by  

             
      

 
                and                    

     
     

  

While the basis functions are produced by the Sinc functions, the numerical solution is computed as 

                    
    

 
 

   

   

 

  

   
                 

      

   

   

 

  
       

 
 

    
 
 

       

    
 

     
 
 

       

      
 

 
      

 
 

       

 
 

      
 

 

          if       

If        then       

  
   

      
  

   
 

The differentiation weights for the second derivative are: 
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The matrix representation of H by applying the Sinc-DVR method takes the following form  

Let        
  

  
  , and denote                   

H=

 
 
 
 
 
 
 
 
 
  

  

       
        

              

       
        

      
        

      

        

       
  

               

       
        

      
        

      

        

      

 
        

      

        

      

        

      

 
        

      

        

      

 
  

       

 

 
 

        

      

 

        

      

 
        

        
  

       
        

      

        

       
        

       
  

        
 
 
 
 
 
 
 
 
 

 

The matrix H is dense, which imposes a high computational cost and memory requirements. 

3. Implementation of Truncated Sinc-DVR for generating D matrix: 

In all of the spectral difference methods, the expression of the  th derivative of the solution is 

truncated to a finite sum    in order to generate a banded matrix and replace the derivatives of the 

     cardinal sum-accelerated functions   
   

 with sum accelerated derivatives    
   

 as follows  

                 
   

                        
    

   . 

The simplest approach for obtaining a matrix D with a bandwidth 2w+1 is to truncate the sum to   

without modifying the derivatives such that     
   

   
   

 . 

Boyd [1] has shown that this truncated Sinc method generates a very poor approximation of the 

derivative. 

 

                             
                    

                          
  

 

As an example, bandwidth = (2   +1)  ,   2   +1=3     =1,   
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Bandwidth=5,   =2 

                       

Of course, it is possible to generate the matrix D with this method by choosing different size of 

bandwidth; we have shown the matrix D here for the case the bandwidth is 3 and 5. In our program 

the matrix D that is computed with Sinc method and is truncated to a finite bandwidth 2   +1 with a 

periodic boundary condition. 

4. Implementation of finite differences  

When using finite differences, the derivatives are approximated as linear combinations of the grid 

values of the corresponding function, based on truncated Taylor extensions, namely, for some 

functions     , we use 

      

        
    

   
  

 
   . 

Since for each grid point, the set of coefficients      is different, therefore in the more general form 

we have  

  
   

     
   

  
 
   . 

In matrix form  

           

 

 
 

  
   

  
   

 

    
   

  
   

 

 
 

 

 

 
 
 
 

   
   

   
   

     
   

   

   
   

      
 
 

                     

        
   

               
   

         
   

   
   

   
   

 

      
   

   
   

      
   

              
   

 

 
 
 
 

 

  
  
 

    
  

 , 

 

where      is the differentiation matrix  
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On a periodic grid, the second order central differentiation matrix for the second derivative is  

 

We can construct this matrix by generating the finite difference weights for each grid point and then 

introducing these weights in row  .  The algorithm that is used to generate finite differences weights is 

the algorithm that Fornberg [2] is introduced. 

 Algorithm for computing weights for finite differences  

In  [2], Fornberg determines the weights in finite difference formulas at the grid points. Let 

             be distinct real numbers, we define                 
    , the polynomial 

       
     

             
 is one of the minimal degree ,  

             

           

     
   

 .  

Let                    
 
     be the Lagrange polynomial for an arbitrary function     . In fact, 

the weights show the changes of the value of  
      

    
   

 in      . The changes in each       affect  

only one term in      . So, we find 

     
   

  

           
   

                   
    

 

  
 
      , 

      
     

             
                                                          

        
    

     
          

        
       

        
 

          

        
                                 . 

 

Now we substitute          
    

 

  
 
      in to the above equation, and the desired relations 

between the weights are obtained:  

    
  

 

     
         

         
     , 
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  , 

     
   

      
      

 
 

   

 

As is seen from the latter formulas, this algorithm is able to generate the coefficients of the 

approximation at a grid point for derivatives different order and also with different order of accuracy. 

This is very important to solve partial differential equations in science problems. Generating the 

differentiation matrix is possible when we have the finite difference weights. We can write a general 

approximation for the m-th derivative at a grid point i , using a stencil of n+1 neighboring nodes , as 

  
   

 
 

   
     

 
   ,  

                         
                        

  

Once we have determined the weights that we use to approximate the m-th derivatives at each grid 

point, so now for a grid of N+1points we have;  

  
   

     
   

  
 
   , 

          . 

Here, D is again the differentiation matrix which is a sparse matrix and needs lower computational 

cost and memory requirements. 
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6. Implementation of the Spectral differences approximation 

 

Earlier articles [2] [3] show that, for solving the Schrödinger equation, spectral methods are a good 

choice since, in comparison with finite differences, they are global. This means that, in finite 

differences, computation at any point depends only on information at neighboring points but in 

spectral methods it depends on the whole domain of computation.  

Spectral difference methods use sum-acceleration of the second derivative in the kinetic energy to 

generate a Hamiltonian which is sparse and spectrally accurate at the same time. Actually, for the 

spectral differences method with equally spaced grid points, both sparsity and rapid convergence are 

achievable, which is especially useful in chemical physics. It can be used to establish important 

molecular information by solving Schrodinger equations. Grid implementation of spectral methods is 

an accurate method for solving differential equations. In fact the Sinc-DVR method is a suitable 

method for solving chemical problems since it is able to approximate well functions that decay 

exponentially. As mentioned in Section 3, the representation of expanded wave function with a Sinc 

basis function on an infinite grid is      

                   
    , 

             
    

 
 , 

        
        

  
. 

In the Schrödinger equation, we need to approximate the second derivative of the wave function: 

                
                               

   

 

   

  

Here, N is number of points and the h is grid spacing and we obtain  

  
   

   
   

            . 

 

 Spectral differences have both spectral accuracy and sparsity features by accelerating the 

convergence of the sum in the above equation. This acceleration is gained by truncating the sum at 

    and we use modified derivative weights       ) so the accelerated approximation of the 

second derivative becomes 

                 
   

                        
    

   . 

 

Boyd [1] has suggested two methods for sum-acceleration, including the Euler method and the Finite 

difference method. We want to have the derivatives in the kinetic energy with high accuracy. For a 

free particle with no external force V(x)=0 the Schrodinger equation contains only the kinetic energy 

operator. So we have 
  

                and the eigensolution of the wave function in this 
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condition (free particle) is                      . We use this function as a numerical 

approximation in Schrödinger equation so the result is               
   

                  
    

    . 

 

The sum-acceleration of a second derivative should minimize the least-squares error in the 

approximated frequencies. We denote the frequency, for the second derivative in Schrodinger 

equation by      and by using Fourier transformation, the frequency error is defined to be 

            . 

Actually, the frequency error measures the error at each frequency   for the free particle.  

        
   

      
  

              , 

 

Where    are the second derivative weights that are to be optimized for the best sum acceleration. We 

can express the least-squares minimization problem in this formula: 

 

            
 

  

   

                                          

 

    

 

              
   

      
     

 
  

 

  
. 

We define the inner product as 

                     
 

  
. 

Where               are two arbitrary functions. 

 

Let               

In the expressions,      is a frequency weight function and the scaled frequency is the highest 

frequency that the grid can capture and so        
 

 
 , and grid spacing is denoted by   . We apply 

different spectral differences techniques, obtained by different choices of the weight function     . 

 

For a given function, the optimum weights (    are those, that minimize the frequency error 

in least-squares setting: 

                 
 

  
, 
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Applying Fourier transform to the above formula we get  

 

      
  

  
                

 

   

 

   
 

               

 

  

   

With two arbitrary functions             , we define the inner product, and then we can 

compute the weighted least squares solution by solving the linear system: 

 
        G is an square matrix              and          are vectors  

    
 

  
        

     
   

 

We use the Gegenbauer polynomials for      , these polynomials are orthogonal on the interval 

 –      with respect the following weight: 

        
 

  
     

By solving this linear system in Matlab, we find that the spectral differences (Gegenbauer 

polynomials) method is appropriate but only when the number of grid points is less than 64, and the 

reason of this problem is the matrix G is ill-conditioned. Therefore, we consider dealing with this ill-

conditioning by analytical techniques and high-precision floating point arithmetics. 

 

Analytical Gegenbauer spectral differences 

For solving the linear system      with analytical methods; we implement numeric method and 

symbolic method in Maple.  

To solve the arising system of linear equations, we use Maple’s function    , which compute the 

integrals within the linear system. 

 

       Symbolic Method: 

Gegenbauer polynomials are able to approximate any arbitrary function     , where the value of   is 

in the interval        according to                 . Gegenbauer polynomials   
     are 

orthogonal with respect to     , so if we expand the error function with Gegenbauer then the 

coefficients of the expansion are given by the integral   : 
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             . 

Gegenbauer polynomials are linear combinations of               so we can write the integration 

of    in the form: 

              
 

  
             . 

With these definitions   we estimate the value of the integrals    and    as 

                   
 

  
            , 

                     
 

  
. 

These integrals can be computed exactly in Maple, using gamma functions and the generalized hyper-

geometric function 

        
              

          
 

                     
 

 
    

 

 
  

 

 
       

 

 
     . 

Finally, the derivative weights for Gegenbauer spectral method is the solution of the linear equation: 

   
   

             
   

                               

 

   

 

For the implementation of the symbolic method we have used          above as build-in functions. 

The theoretical explanation of the symbolic method is described below. 

    
 

  
        

                                                                   

    
 

      
 

                 
 

  
. 

Let      and          , then the formula is transformed to 

    
 

                          
 

  
. 

After changing the variable under the integral from    to  , we obtain 

    
  

                        
 

  
. 

Then use     to instead the integral part of the above function,  
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Apply the same idea for the operator     as follows: 

         
 

                      
 

  
  . 

           and get the integral of   with the interval [-1,1], 

                                

 

  

 

By applying the formula          =     
   

 
     

   

 
  to replace                 , we 

arrive at 

                                    
 

  
                                   

 

  
. 

Denote next                   . 

When          
 

 
          

 

 
                     

When                                 

Then the linear system is defined as  

                
                       

 

The so-obtained linear system can be easily solved with high precision floating point arithmetic in 

Maple. We have used          . However, we got the similar result in Matlab implementation, in 

fact the Gegenbauer method still produces larger errors than the high-order finite difference method 

for meshes with more than 64 grid points.  

 

          N 

Method 

128 256 512 1024 2048 

Sinc - DVR 6.462650 9.590642 18.03130 63.46217 292.3984 

Trun - Sinc 3.003596 3.900185 5.306299 9.415642 33.40159 

Finite 

differences 

2.988733 3.536411 4.724180 6.855668 21.54972 

Gegenbauer 2.936982 3.466816 4.574816 6.849255 21.29761 

Table1:Execution time (seconds) for different methods with respect to the number of grid points 
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In all methods the equation              is solved. As already has mentioned, D is an N*N 

matrix, and   is a N-vector. In Sinc-DVR method, the matrix D is a full matrix. In the truncated Sinc-

DVR, the finite differences and Gegenbauer method, D is a sparse matrix. The multiplication time 

when D is a full matrix is of order       while in the case D is a sparse matrix it reduces to      . 

The latter difference influences the execution time significantly and the experiments when D is dense 

run much slower. This conclusion is confirmed by the results in the following table. We see that the 

Sinc-DVR method is the most time-consuming method. Also, to see the difference in execution time 

we use larger number of points. When the number of points is 2048, the execution time of Sinc-DVR 

method is about 10 times larger than the execution time of the three other methods.    

 

 

          N 

Method 

256 128 64 32 16 

Sinc - DVR 3.735e-013 7.338e-013 3.344e-008 1.806e-003 0.1268 

Trun - Sinc 2.266 3.845e-001 8.649e-002 2.428e-002 0.1268 

Finite 

differences 

5.124e-009 1.176e-006 1.999e-004 1.437e-002 0.1511 

Analytical 4.209e-005 1.142e-005 2.62e-005 1.031e-002 0.1466 

Gegenbauer 3.092e-005 8.561e-006 2.926e-005 1.031e-002 0.1466 

Table2: Computation of Error for different methods with respect to the number of grid points 

 

 

In Table 2, the discretization error is computed with respect to the number of grid-points. As we can 

see, the Sinc-DVR method is the most accurate method. Gegenbauer spectral differences method has 

also good accuracy but when the number of grid points is more than 64 then the finite difference 

method becomes more accurate due to the ill-conditioning of the matrix G.  
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Figure1: The figure shows the Error as a function of N for five different methods: Sinc-DVR, Truncated Sinc-DVR, Finite differences, 

Analytical spectral differences and Gegenbauer Spectral differences. 

 

 

The order of accuracy for the different methods is shown in Figure 1. The Sinc-DVR method is 

exponentially convergent. On the other hand, the finite difference method has forth order of accuracy 

however is not exponentially accurate. Gegenbaur spectral differences method is exponentially 

convergence only for less than 64 grid points and the truncated Sinc-DVR method is worse with 

respect to accuracy.   
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Figure 2: the figure shows the execution time of different methods as a function of grid points.  

As we can see in Figure 2, the execution time for Sinc-DVR method is growing quadratically with respect 

to the number of grid points, however for the truncated Sinc-DVR, the finite differences and Gegenbauer 

methods the execution time is increasing linearly.  
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