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Abstract

This report provides alternative ways to adress nonlipeatial differential equa-
tions (PDES) in gradient flow form, particularly a model of surgaut in difusive inter-
face flow. The 2D problem is first discretized in space withamdard Finite Element
procedure and the resulting system of nonlinear ODEs isestuny the use of dierent
numerical schemes for the time discretization. Two spdipanethods are proposed and
their respective performance is compared to standardi@olotethods. The outcome
is a gain in performance for low accuracies. This improveniieeomes more notable
when dealing with large systems of ordinaryteiential equations (ODES) result from
discretizations on finer space grids. Varying two initiahfigurations of water and air,
the model is tested and the performance of the numericalicolis studied under dif-
ferent initial concentrations of surfactant.

1 Introduction

Surfactants (surface-active agents) are substances tiest wsed in low concentrations, af-
fect the surface characteristics of a two-phase systengx@ample, liquid-liquid. A surfac-
tant presents Boundary-tracingoehavior, which means that it tends to trace the juncture of
the two phases. Altering in this way the properties of theriiaice, increasing the contact of
materials. For instance, lowering the surface tension@btiundary between fluids.

Soaps, foaming agents, emulsifiers, dispersants and datergre common examples of
surfactants and the study of the surface rheology of sanfidtdyers, is widely appreciated in
fields including detergency, foaming, water repellancet¢waoofing), wetting, lubrication,
emulsification (coating processes) and plays also roleegrhiman body, namely in the
lung, contributing to its correct functioning.



This report contains a short presentation of modellingasaint in difusive interface
flow given in Section 1, starting from a brief presentatiortlad two-phase flowproblem
followed by theCahn Hilliard equation. The inclusion of surfactant is shown and a cou-
ple of new chemical potentials presented. After the modekis a finite element (FEM)
discretization is carefully performed and an iterativeesuk to solve the resulting set of
nonlinear ODEs is suggested in Section 2. Hints on how td titae good behavior of solu-
tions are also given in this section. The main subject in ri®rt, the split-step methods,
is introduced in Section 3. Three split-step methods aregmted as the time discretization
in the solution algorithm and some properties and stalaliggaments are mentioned as well.
Section 4 describes the implementation and the tools ediliz the project. Here, some par-
ticular features of the code are explained in detail. Theemnizal experiments are presented
in Section 5 along with the methodology in use. The initiahditions are described and
specific arrangements for the solver parameters are egplain Section 6 the outcome of
the work done in the project is discussed and some of the prd€@ns of using split-step
methods highlighted compared to standard time-disctétiza. After this, the smoothness
and well-behavior of the solution are shortly presented @drdussed. In the final section
some general conclusions and future improvements are.given

2 Modelling surfactant in diffusive interface flow

The model starts from the non dimensionalized Cahn-Hdliaquation (1), that is well
known for modelling problems in areas such as medicine, llnegg, new-material devel-
opment and complex problems in multy-phase fluid dynami¢ss &quation describes the
phase separation dynamics in a binary fluid through the usieeqfhase-fieldvariable¢ €
[-1,1]. Each extreme iw represents a full phase, namely water or oil, and O delirhigs t
interface between the fluids. It has to be mentioned that thaetndescribes the dynamics
of two incompressible and inmiscible fluids.

The non dimensionalized Cahn-Hilliard equation has thiefahg form

9 _ 1 o 4. Cee
at_PeﬁV(d’er) V) 1)
The Cahn parameter (Cn) represents the thickness of thatteemnregion of the phases in

the fluid, and the Peclet number (Pe) expresses the ratiebatadvection and filusion of
the property observed in a non-dimensional frame.

One of the most important features of equation (1) is the @wasgion of mass, that can
be seen in systems with the form 5
¢
5 V-J. (2)
The inclusion of thesurfactant volume fractiog € [0,1] in the Cahn-Hilliard equation is
presented as further consideration within the model. Texeof Surfactants in the current
study is analyzed in very small quantities, such that itkigsgion in the model do not modify

the final volume.



The system of equations (3) to be approximated here are dddwader the Landau-
Ginzburg free-energy framework of ideas and takes into@utcthe presence of surfactant
as an agent modifyiftghe Canh-Hilliard behavior of equation (1). The proposestam is
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wherep,, u, are the chemical potentials, namely,
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Note in this case the distinction of Peclet numberssfandys and the difusive-like constant
Pi describing the diusive rate ofy. Clearly, the system (3) belongs to the family offfsti
PDEs.

Even though it is hard to set a closed definitiorStiffinessn ODEs, a common attempt
is to classify those ODE with terms that account fdfetient time scales within a solution,
requiring extra analysis to set a correct time step for tivesoThis is the case presented in
equations (6) showed below. There, two important time sciewithin the termsv* and
V2 when the PDE is discretized in space by a standar numerisahse, for instance FEM.
Stiffness means in short, that very small time-steps need to blveesfor, and the use of
explicit solvers would not be a suitable strategy for suaibms.

1For a comprehensive derivation, see [En].

Figure 1: Plot for a particular solution in the Coalescing bubbles exsment with 20000
triangles showing a typical case for the phase figlteft) and the surfactant volume fraction
variabley (right).



Notice the convenient use of the log function when compuytipgy taking advantage of
the property
v _
V(L= 9)Vlog = = Vy. (5)

From this, it is possible to rename the variables of intereatmore compact form
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The resulting equations are part of the familyGradient Systenthat satisfy the criteria
given in [Ey]. This type of systems allow the splitting of teeergy incontractiveand
expansiveparts. It is possible to simplify considerably the numdrgzneme by accounting
for different solution methodologies for contractive or expan&u@s. In the particular case
treated here, a gradient-stable algorithm is guarantegerwertain discretization conditions.
Some of these advantages are explained in detail in [Legrliatthis report it is shown that
for low tolerances, typically up to 16, great performance can be obtained thanks to the fact
that the equations (6) show a system in gradient form.

3 FEM discretization in space

The first step towards a finite element discretization in epecto rewrite the model system
of equations in variational form. To this end, the systenmig@hultiplied by an arbitrary test
functiony and then integrated over the entire problem dom@in (

fg x®dPx= S fg XV2 dx + fg X (¢ + 6>+ (L- 6" o + Fu9) &,

d¢
— dBx = if V20 d®x,
fg)‘ at Pe J, ¢

_ov2
fQX\Pon:fQX(_(l 7 +Elx¢2) dix,

f Vi f oV - (PIVY + u(L - ) V) dx.
Q Q

(7)




Using the Green'’s first identity and the Divergence theorem

V- (avb) = Va- Vb + av?b,

(8)
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and applying homogeneous Neumann boundary conditionshémetterms involving the
Laplacean operator in the first and second equations inqfgws
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Similarly as before, using the vector identl®y- (yA) = Vy - A + xV - A, the Divergence

theorem
fXV-Ad3x:—fVX-Ad3x+fXA'ndzx, (10)
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and finally using the boundary condition for the 4th equatiofy),
% (PiVy + y(1 - ¢)V¥) = 0. (11)

The weak form then reads
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3.1 Galerkin method and spatial discretization
Here, take the ansatz
p6y.0 = > A ONY); x =N, (13)
j

and similary ford, ¢ and¥. Then inserting this ansatz into the weak form (12) leads to



M® = SR + (g, ),
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with the standard definitions for the massftass and other nonlinear entities
Mij = f NiN; d®x,  Kjj = fVNi - VN, dx,
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1- 2\2
o= [W[-E2 L )

K = %LVM (1 - ¢)VN; d*x.

The variablesb and¥ are rdferred to as the chemical potentials and the reason for having
introduced them as variables is due to the fact thabtmds functionsised in linear FEM

are only continuous, but not continuouslyfdrentiable and there is the need to reduce the
order of the PDE. Another reason is to avoid solvingdoby using direct method$\{™?),
these lead to dense matrix problems that would be unnedgssgpensive. Instead, it is
possible as a first approximation to introducimpedmass matrixM with diagonal en-
trie?, whose inverse is straightforward to calculate and its uesgsves the original sparsity
pattern, avoiding working with full matrices.

3.2 Numerical integration

For the numerical surface integration it is possible to migze in space using th@auss-
Legendre quadrature

1
ELK f(x,y)dxdyx~ Zj:Wj f(xj,yj) (16)

whereA, is the area of the triangl@y, (X;,y;) the respective quadrature points amgdthe
Gauss-Legendreeights.

2Under some regularity conditions on the mesh the use of ldmpagrices give second order in accuracy



3.3 Nonlinear iterations

In general a nonlinear system of the form

~ ay 3
M—r=70) 17)
can be built for the system (14) by defining the new vector
y = (¢l3 ¢23 Y ¢n, l;”l, l//Z, Y lﬁn)T . (18)
When discretized in time by first order forward finitéfdrences, it is obtained
M(y™ - y") = AtF(y). (19)

Notice that the matrit/ is a diagonal block matrix containifig in each of its two entries.
Assuming the splittingF (y", y™1) = P(y") + Q(y™?) for the explicit and implicit terms,
yields

M(y™ - y") = AtP(Y") + AtQY™). (20)

Thus, the system to be solved for is
N = My™! - My" — At P(y") — At Q(y™*) = 0. (21)

Newton’s method to solve nonlinear problems consists ohiileg over two steps. First,
computing a correctiofiy, in the vector system

TSy = —N(Y) (22)
with Jacobian
;_ON
] = ay]

. After that, the solution is updated by computiyiy; = yi*! + 6k and repeat. Notice
that in the system (21) the variable to solve foryi$! and taking the derivatives of the
vectory” vanishes, meaning that it has no impact on the Jacobian.igthie gain of using
explicit methods. However, as it has been said before, tttetliat the resulting system is
stiff preventing us from using solely explicit methods. Nontksj¢here are alternative ways
to put more weight into the explicit part to lessen the Jamolsomputation.

3.4 Mass conservation

In the experiments shown in this project, there are no eatesaurces or sinks of mass (phase
¥). The evolution of the system is caused by relaxation, wiheellls to reaccomodation
procesess due to the nature of the phenomena. Hence, thphase of the system must
be preserved and its conservation will serve as a measuterhtre error in the numerical

solution
fc/) d®x = f Z ¢iN; d*x = constant (23)
Q Q i



Using the property); N; = 1 for the FEM basis functions and inserting this into the mass
conservation integral yields

LZNiZ¢ijd3XZZ(Z¢jLNide3X]:ZM” b; (24)
i j i j i

which can be easily calculated on each time-step.

4  Split-Step Methods

Usually the discretization in time can be performed by using of the standard methods,
such as the fully implicit Backward Euler (BE) method, or lexziing at an average with the
Midpoint Rule (MidP) method, Trapezoidal (TPZ) method oy ather clever combination
of these. One approach that has been proposed [Ey], is td adopmpromise between
explicit and implicit methods, taking advantage of the hasg form of the equations by
weighing the terms as a combination that leads to incregsnigrmance when used along
with an adaptative time-stepping scheme. For instancerna ("')® is clearly an non-
linear implicit term and hence Jacobian evaluations areled¢o solve it implicitly. The
same term can be written ag"f?¢"™! transforming the latter term into a linear term for the
implicit solver, avoiding Jacobian calls when a Jacobidaaterization scheme is in use
Nonetheless, introducing such artificial terms increalsedruncation error in the system.

The way that some terms are passed as explicit and some stimeplécit into the solver
in (14), dependes on the nature of such terms (expansivenbractive). Linearity of the
implicit part means evaluating constant Jacobians, chieapalculate. This can be achieved
by passing some nonlinear terms in the implicit step to bé giathe explicit part. Eyre
shows stability for these split methods and propose a sethiorCahn-Hilliard equation
(1) that will be used and extended here. There is no uniquetaaplit the problem, but
some characteristics of the gradient flows [Ey] have to bertakto account due to stability
requirements. See in [Ey] the analysis of expansive andactinte terms in gradient-flow-
type problems.

It is aimed, to study the behavior of these ODEs under a caatibim of explicit and
implicit methods, giving dierent importance to each of the terms in the equation acogrdi
to the nature of the nonlinearity.Split methods’is the name coined for this technique,
leading to diferent improvements in performance depending on the s@d,usr instance
reducing the number of function calls compared to standatthods. Even though choosing
the way that the splitis done is not unique, it is possiblettam valuable information about
the solution process andftirences in explicit and implicit methods. Some common time
discretization methods for the Cahn-Hilliard equation banobtained by rewritting (1) in

3A complete description on Jacobian refactorizations aagtadive time-stepping schemes is given in [So1]
and [So2]



the form
O =—¢+¢°- V2,

” (25)
_ 12
i P%V D,
and then discretizing in time as follows
0" = " + (") - LV (26)
Next, some time stepping schemes are presented.
Backward Euler
o = pg Voot (27)
Midpoint rule
n4 n+1
o = %v%(%) . (28)
Trapezoidal rule
Of = zpg (V0" + VO™ . (29)

For the split-step methods presented in [Ey], a similar apghn is used by changing the dis-
cretization for a combination of the ford(¢", ™).

Eyre’s split
O = —g" + (§")2" - STV (30)
Semi-implicit
O = —¢" + (p") - LV, (31)
Non-linearly stabilized
D" = —¢" + (¢n+1)3 _ ¥V2¢n+l' (32)
Linearly stabilized
O = —39" + 2™ + (¢7)° - SLVZM, (33)

and computing afterwards a simple scheme for the time stgppi

n+l _ n
po=L L . ¢ - pg VP (34)



4.1 Split-step methods for the surfactant

The system of equations in (14) is highly nonlinear, thaefdinding good split methods
is slightly more complicated than for the Cahn-Hilliard atjan. In particular, the non-
constant mobilityM,, = ¥(1 — ¢) makes this task more flicult. However, it is possible to
mimic the most evident features of the split-steps presemegore. In this study the follow-
ing three split methods are analyzed.

Semi-Implicit
fy = —" + (¢n)3 + 2_éx'70n+1¢n _ [1 _ (¢n)2] ¢n¢n+1 _ %V2¢n+l )

. 2 . ] l//n+1
py = —3[1- (" + (@2 + Pi Iogl_—W, (35)

Mw — wn+1(l _ l/,n+1) ]
Non-linearly stabilized

Hp = _¢n + (¢n+1)3 + 2_éx'70n+1¢n+1 _ ,ﬁnqﬁn + wn+1(¢n+1)3 _ %V2¢n+l ,

n+1

py = =3 [1=2("2 + (g™ + 72(6™1)? + Pilog T (36)
My = y"(1-y").
Linearized (Linearly-stabilized)
Hp = _¢n + (¢n)2¢n+l + 2_éan¢n+l _ l/ln¢n + wn(¢n)2¢n+l _ %V2¢n+l ,
2 ] n+1
py = -1 [1 _ (¢n)2] + 72 (¢")? + Pi Iogl_—wml : (37)

My = g1 - y").

Compared to the equations (4) it is clear that some nonlitneshave been changed in such
a way that there can be a gain in linearity of the implicit ter@™*, y"*1) or the degree of
such nonlinearity is reduced.

5 Code features

The existing code FLOW was provided as the platform for bessiplit-step methods in the
sense of gradient flows (see [Ey]), as an approach to thei@olot problems in two phase



flows. The MATLAB code for ODE1S and the FLOW package alonghvitis functional-
ity were explained and the objective of the project was t@@né suitable solutions to the
surfactant in two-phase flows under split-step methods @aegdluate theirféiciency in the
two-dimensional case.

The plataform for the implementation of this code was dgvetbin MATLAB by us-
ing the tools provided within the PDETOOL package, which istrng tool for solving
PDEs with Finite Element Method that contains several bnittefinitions for solving stan-
dard PDE problems. The Delaunay triangulation is one of tttmgest PDETOOL features
used in this project, which generates the best set of tranlgy maximizing the angles in
each triangle (acute angles lower the accuracy of the $pid@etization). PDETOOL also
provides the fast assembly of the matricial objects in didins (15).

As a first approximation, PDETOOL for FEM in MATLAB uses oniy® point quadra-
ture in the midpoint of each triangle. For a better accuraoyenguadrature points need to
be considered.

Once the spatial discretization is set, the time steppirtgken care of by ODE1S, a
MATLAB implementation for computing the solution of systerof ODEs developed by
Stefan Engblom. ODELS is a solver forfBhonlinear ODEs that relies on several features
asJacobian refactorization®Digital filters andtime step adaptivity

In order to use ODELS as a solver, some modifications wereeimgrhted. For instance,
a counter carrying statistics of the solution, a sparsityepa used for speeding up the nu-
merical Jacobians, the allowance of passing a mass matthei®@DE definition, a sparse
direct solver (LU) and an interface passing all the numéobgects to ODELS for the spe-
cific problem (14). At first, ODE1S was using the BE method dmly the extension to the
MidP method, TPZ method and split-step methods was a crdeialopment in this project.

As mentioned, the Jacobidis calculated numerically by ODE1S using the matlab func-
tion numjac A sparse patterfi is a matrix with ones in the nonzero Jacobian arguments,
numijacis called according t8 avoiding void calculations of zero entries. In ODELS every
new time step comes as a result of an internal automatic casopaf three reference points,
where as a result, the new step length to be taken in orderntamahe desired accuracy is
returned. Significant understanding can be obtained frats @f number of function calls
vs the tolerance reached as a measurement of performardey sxample Figure 4.

6 Numerical experiments

In order to understand the dynamics of the behavior of staifas in difusive flows several
experiments are presented below. In all the experimenténthial condition v, is set to
be constant throughout the domain. This is an ideal appratkim to be considered as an
academic experiment only. In reality it is impossible toiaeh a constant concentratigg
everywhere due to the boundary-tracing nature of the Sarfits

4For more details see [So1], [S02] and [Gu].



One dificulty that arises when dealing with nonlinear problems ishow that a com-
puted numerical solution is ficiently good. What makes this task even harder is finding
reliable results to make comparisons allowing the possittd decide whether a solution is
well behaved or not. The model in equations (3) is developetich a way, that the concen-
tration of the surfactant in the solution moves towards #ggans where = 0. This should
be the most important indicator that a solution is followthg right path.

There are several ways to track the good behavior of a nualexadution, one of the
most important characteristics on gradient flows, is thatahergy tends to decrease in the
process. In this way, each time step should show a decremtd total energy of the system
following a relaxation process until a steady state phaseaished. Furthermore, the model
(3) describes a decrease of the surface tension due to tlusiort of the surfactant. This
relaxation would take longer times to complete than withoitial surfactant, similarly than
when a spring with a small elastic constant would last a lopgeiod to complete a cycle
compared to a spring with a higher elastic constant carrfiegsame weight. It is possible
to keep track of this relaxation time in the numerical siniolaby setting a common point,
say the time when two bubbles first touch forming a 8-shapeunldi¢see figure 5, right).

Another valuable measurement that is used in this repokigeping track of the mass
conservation within the domain. For this, at each time shepduantity (24) is traced in
order to control how good a method performs regarding massearvation. Notice that
the Neumann-type boundary conditions used to build the @@k, account for the mass-
conservation in the system.

6.1 Experimentsin 1D

The main interest in the current report lies in the correqilementation of the 2D spatial
discretization. For this, it is necessary to have a well pdoinitial example in 1D. The
work presented here is based on a solution provided by SkEfghlom, approximating the
equation (3) by using Legendre-spectral-methods for theréiization in space. The weak
form in that case has a similar structure that the one usdeEM. However, the 1D case is
built by using Legendre polynomials as test functions. Towagutational experiment was
set for a number of polynomialsp = 100 and compared with a second run usiug= 200
allowing to measure performance for twdfdrent sizes of the Jacobian matrix.

The initial conditions arg(x, 0) = cos(2r X) + sin(5 x) andy(x, 0) = ¢. It is observed
in Figure (2) that whilep tends to get stabilized into two well-behaved phagestarts from
a constant value (left), moves to the regions whgre 0 (right) resulting in a narrow-
Gaussian-like peak centered in the final interface (dowagKing always the regions where
¢ =0.

The experiment was run several times varying the requiredracy T OL) from 1073 to
1077 in order to measure performance. The plot of TOL vs numbeunétion calls (nfun)
is presented in Figure 3 and Table 1 shows data for the spea&r OL = 1074



Method | nStpAccepted nFaillintTol | nfun | njac | nlinsolve
BE 67 2 2153| 8 551
MidPoint 54 0 1617| 6 415
TPZ 52 0 1608| 6 406
Semi-impl 93 0 1159 2 755
non-linStab 79 3 1934| 6 732
Linearized 86 0 1550| 4 748

Table 1: Statistics on the solution of the surfactant system in 1dgisip = 100 with
TOL= 10"

Case 7, Time t = 0.000000e+00 Case 7, Time t = 1.804704e-02
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Figure 2: Evolution of the 1D surfactant problem fgrin blue andy in red. Left: initial
conditions, right: showing the dynamics, down: stady stafetion.



6.2 Experimentsin 2D

The first experiment is the planar version of the sinusoidéhi condition forg given in the
1D case, of the forng(x,y, 0) = cos(Z X) + sin(3 X). The behavior of the solution remains
fairly similar as in the 1D problem.

The second experiment to be considered is the coalescema® biibbles in a squared
domain of dimensiorx,y € [-1,1]. The distance between the bubbles is set to be close
enough for them to experience coalescence. The expectedibelfor this experiment is
that after the boundary of the bubbles come in touch, thesearension then tends to lower
the energy by relaxing the surfaces ending up in a biggerlbufithe shape of the solution
remains quite similar in all cases for initial surfactanhcentrations, but the presence of a
higher value of}, impacts on the time scale of the solution, taking a longee tiocomplete
one characteristic period.

To illustrate this fact Table 4 shows some characteristies taken by running the nu-
merical experiment with approximately 20000 trianglesyray 1, for a number of choices
and registering the time needed for the bubbles to first tdocming a 8-like boundary (see
Figure 5, right).

7 Discussion

The discussion starts by comparing the 1D problem to its 2Dai representation under the
same initial conditions. What is immediately apparent frieigure 3 (up), is that the split
methods in the 1D case, are cheaper to use up to a limitldf*° in relative error, bounded
by the crossing point where all the methods seem to perfomiiasly. When the number
of Legendre polynomials doubles framp = 100 tonp = 200, this crossing point moves to
rTol ~ 10 (Figure 3, down), achieving one order higher in accuracy.eithe number
of polynomials increases, the Jacobian of the system bexaosly to calculate and the
split-methods appear to be morgi@ent than the standard methods. Take for instance the
performance of the Semi-implicit with the lowest functicadls nfun= 1159 in table 1, for
aTOL = 10 and only two of the Jacobian refactorizations. The splithods performed
better than BE method, MidP method and TPZ method in the neglere 10* < TOL <
10°3.

From Table 1 it is clear that for the split methods the numifeequired time steps in-
creases. As discussed before, the truncation error isegrémt the split methods This
makes ODE1S more suspicious producing shorter time steg$ience, more of them com-
pared to standard methods.

As a first conclusion, the desired gain in performance is Hedrin a region where the
split methods are cheaper and mofiéceent up to a point where the number of steps needed
become too many, causing the performance to drop.

The fact that the performance of the split-methods incieageen the Jacobian of the

SFor more a detailed reading see [Ey].
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Figure 3: Plots showing rTol (x-axis) vs nFun (y-axis) in the solutiaf the surfactant in
1D (6), for the first 100 Legendre polynomials (up), and 20§ pomials (down).



Method | nStpAccepted nFaillntTol | nfun | njac| nNit | nLU it/stp
BE 179 0 14611| 196 | 1869 | 398 | 10.441341
MidPoint 148 2 4003 | 37 | 1596| 136 | 10.783784
TPZ 142 7 12841| 172 | 1659| 341 | 11.683099
Semi-impl 208 3 4775 | 32 | 2693| 118 | 12.947115
Linearized 195 2 3378 | 15 | 2401| 88 | 12.312821

Table 2:Statistics on the solution of the planar surfactant syste20) using20000triangles

with TOL=10"%
Method | nStpAccepted nFaillintTol | nfun | njac| nNit | nLU it/stp
BE 248 9 18043| 230 | 3091 | 473 | 12.463710
MidPoint 615 10 9611 | 19 | 8374 | 126 | 13.616260
TPZ 181 6 18334| 243 | 2537 | 432 | 14.016575
Semi-impl 847 8 13365| 19 | 12128| 124 | 14.318772
Linearized 883 15 13386 11 | 12669| 120 | 14.347678

Table 3:Statistics on the solution of the planar surfactant in 2Dngs20000triangles with
TOL=107.

system is twice larger, permits to justify their use in higbanensions or in cases where
Jacobian evaluations are more expensive. This is the maiivation for moving into the
2D.

Looking at Table 2, it is evident the Linearized great parfance with only 3378 func-
tion calls and only 15 Jacobian refactorizations, prodydi@5 time-steps for a relative tol-
erance of 10* (inside the high performance gap), which is a good accuracygéneral
purposes. The MidP, as the second preferred, requires 40@8dn calls and 37 Jacobian
refactorizations resulting in 148 time-steps. Note thanethough the Linearized performs
better than the MidP it has to take more time-steps as exqudefore.

The above said is not the case fBOL = 107 (outside the high performance gap)
in Table 3, where the top method is the MidP with 9611 funcitatis and 19 Jacobian
refactorizations, followed by the Semi-Implicit with a higr number of 13365 function calls
but the same 19 Jacobian refactorizations. However, ther lperformes better than the
TPZ, who took 18043 function calls and 243 Jacobian refaations, being large numbers
compared to the two first methods mentioned before.

Proving performance is not enough evidence to assert whatieethod is behaving
properly or not. To illustrate this, Figure 6 (down) showsistdgram of the mass of the
system defined in (24) along the time steps for 5000 triangléise 2D problem. What is
significantly apparent from this figure is that the TPZ andltimearized present curves that
remained fairly constant throughout each time step. Hethey, conserve the mass of the
system in higher accuracy, proving to be more stable tharegtef the considered methods.

Another alternative way to confirm the good behavior of a nucaésolution is deduced
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Figure 4: Performance plots for the 2D surfactant problem. Up: Plaeaperiment with
5000 triangles. Down: Coalescing bubbles experiment wiidd® triangles.



by the physics of the phenomena. Figure 6 (up) depicts thgatbn time (Table 4) in which
two air bubbles under water, with, as the initial concentration of surfactant, collide (see
Figure 5). It is apparent that for a concentration @, < 0.25 the relaxation time appears to
have an exponential behavior (approximately linear in dgatithmic Figure 6, down).

8 Conclusions

The split methods as an approach to solve nonlinear probpgasent an alternative way
to reduce the cost per iteration compared to fully implioitvers. They preserve important
characteristics of gradient flows as for example consemadf mass. The main idea is
to combine implicit and explicit terms in such a way that tleenputational cost can be
reduced. The lost s in truncation error, becoming evigeiotl lower relative erros than 16

in this work. For higher relative errors the split methoddq@en better than the conventional
techniques.

The analysis done in the coupled surfactant-phase fieldgarobhowed that the advan-
tages of the split methods lie in the cost per Jacobian etrahsga Greater performance can
be seen with the split methods when the cost of Jacobianavahs is increased, therefore,
the improvement seen in the 1D case is not as dramatic ashehigmensions.

Itis shown how the use of split-step methods in 1D leads teeapér numerical solution
up to a relative tolerance of 1¥°. When the number of the polynomials used is doubled, the
tendency is to perform even better, that is up to*X8sulting most suitable for problems with
expensive Jacobian calculations. This last fact motivataking with higher dimensions
where the Jacobian is far more expensive than in the 1D case.

As expected, the 2D case follows the same trend of ideas ke itDX case. However, the
linearized-split &ers in both cases (Figure 4, up with 5000 and down with 200@60dtes)
a better performance than the rest of methods. The semieitrgohd the MidP show similar
performance than the TPZ or BE with 5000 triangles.

For 20000 triangles, the BE or TPZ perform poorly comparetiémther three methods.
Justifying the initial motivation for the use of the splitethods in higher dimensions. On the
other hand, the MidP presents fairly similar results to tisimplicit but showing better
stability.

As a final overview of the course, | gained valuable knowlealgsolving systems of non-
linear PDEs numerically, and learnt from the correct imptatation of the Newton method
for implicit solvers among several other details in an adgbenschemes based on a poste-
riori error bounds. The dlierences between explicit and implicit time discretizagiorere
reinforced along the course and new trends in cutting-edigers were introduced. The im-
plementation of a model problem by using finite element magldeepened the knowledge
obtained in former courses within the MSc in Computatior@aéBce programme.



Figure 5: Diagrams for an arbitrary solution in the Coalescing bubblexperiment with
20000 triangles showing the smoothness of the solutiorhtR8like shape when the bub-
bles first touch in the coalescence process.

Wb tc Wb tc

0 0.3705]| 0.2250| 2.3285
0.0250| 0.5328|| 0.2500| 3.4656
0.0500| 0.5230]| 0.2750| 5.1274
0.0750| 0.7452| 0.3000| 7.5394
0.1000| 0.7559|| 0.3250| 13.5625
0.1250| 1.0630|| 0.3500| 24.9005
0.1500| 1.0871| 0.3750| 57.4483
0.1750| 1.5510]| 0.4000| 140.2650
0.2000| 1.5960 - -

Table 4:Relaxation times in the coalescing bubbles under the prrefy,, surfactant with
a resolution of 5000 triangles and a tolerance of TOI103.



Relaxation time (Surface tension)
10 T T T

107 - - | ! I | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
LIJb
X 107 Mass Conservation
05F i

e —— |

a Euler Backward
< -0.5f S b
< Midpoint
Trapezoidal
Semi-impl
1k Linearized -
-15r b
-2 1 1 1 1 1
0 200 400 600 800 1000 1200

time step
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trationsy, with 5000 triangles and TOE 10-3. Down: Conservation of mass in the system
according to the solution-method in use.



8.1 Future work

The field of possible improvements deimited by this proysdtroad and extensive. Cur-
rently, ODE1S solves the linear system (22) by using a spanpéementation of direct
solvers provided by MATLAB. Long delays were experiencedewltalculating the solu-
tions for a large number of triangles. An iterative solv&elGMRES would be preferable
to the current LU decomposition, since GMRES accounts fersgarsity of the matrices.
Nonetheless, a study on suitable initial guesses mustfoRor instance, an incomplete LU
could serve as a good starting point. Another possibilityg¢orease the computational cost,
is to provide user-computed-Jacobians to ODELS that séovweplace the current numJac
boosting the algorithm.

When controlling the error, ODE1S estimates the size of dve time-step by using L2-
norms on the solutiopt andy.. A better approach is to consider a energy-norm derived from
the physical system.

The paralelization of the code is a non-trivial task to be lengented, for the code in
ODELS needs to be parsed to C arbefore coding in OMP, PThreads or MPI. However,
it is definitely an important point for future improvements.

Another idea to avoid the use of a lumped matrix in the sofutib(14) is to use high
order basis functions, namely the Lagrange-cubic-basismts the system from being split
in two stages due to lack of smoothness and continuity of dhgien. Other kind of high-
order basis functions are the Hermite polynomials, whidiudes an approximation for the
derivatives as degrees of freedom. The use of the latter migtavoids the use of artifi-
cial inclusion of new nodal points, like in the higher ordexgtange polynomials, but also
increases considerably the accuracy of the method.

As a first approach to the advective problem in fluid flows actadvective matrix can
be implemented, meaning that the presence of surfactarthadrehavior of will be con-
sidered as sources altering the velocity field. Here, a cehgrsive study should follow in
order to guarantee the conservation of mass in the systergofous stability analysis of the
system is necessary at this stage since FEM is proven to balble$or advective problems.

A further step in the latter direction would be to investeydhe dfects of surfactant
on the velocity field. For this research topic, coupling eopne (3) to the incompressible
Navier Stokes equations is a necessary stage that requir@gensive code development.
In an earlier work done in [En] it was proven that the bubblas bounce away from each
other instead of the coalescing experienced in the currepg. The resulting bouncing is
caused by alterations of the velocity field due to the pres@ftigh concentrations of the
surfactant.

Adaptivity is an elaborated solution, which consists inr@asing the computational
power in the regions where the boundagy £ 0) is located, making the mesh finner and
avoiding extra gort in the domains were the solution isfBciently smooth.
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