
Institutionen f�or informationsteknologi

E�ciency and control of split-step
methods for complex 
uid problems

J. C. Araujo-Cabarcas

Supervisor: Stefan Engblom

Project in Computational Science: Report

February 2012

P
R
O
J
E
C
T
R
E
P
O
R
T



Efficiency and control of split-step methods for
complex fluid problems

J. C. Araujo-Cabarcas

Supervisor: Stefan Engblom
MSc Computational Science, Uppsala University

February 8, 2012

Abstract

This report provides alternative ways to adress nonlinearpartial differential equa-
tions (PDEs) in gradient flow form, particularly a model of surfactant in diffusive inter-
face flow. The 2D problem is first discretized in space with a standard Finite Element
procedure and the resulting system of nonlinear ODEs is studied by the use of different
numerical schemes for the time discretization. Two split-step-methods are proposed and
their respective performance is compared to standard solution methods. The outcome
is a gain in performance for low accuracies. This improvement becomes more notable
when dealing with large systems of ordinary differential equations (ODEs) result from
discretizations on finer space grids. Varying two initial configurations of water and air,
the model is tested and the performance of the numerical solution is studied under dif-
ferent initial concentrations of surfactant.

1 Introduction

Surfactants (surface-active agents) are substances that when used in low concentrations, af-
fect the surface characteristics of a two-phase system, forexample, liquid-liquid. A surfac-
tant presents aboundary-tracingbehavior, which means that it tends to trace the juncture of
the two phases. Altering in this way the properties of the interface, increasing the contact of
materials. For instance, lowering the surface tension of the boundary between fluids.

Soaps, foaming agents, emulsifiers, dispersants and detergents are common examples of
surfactants and the study of the surface rheology of surfactant layers, is widely appreciated in
fields including detergency, foaming, water repellance (waterproofing), wetting, lubrication,
emulsification (coating processes) and plays also roles in the human body, namely in the
lung, contributing to its correct functioning.

1



This report contains a short presentation of modelling surfactant in diffusive interface
flow given in Section 1, starting from a brief presentation ofthe two-phase flowproblem
followed by theCahn Hilliard equation. The inclusion of surfactant is shown and a cou-
ple of new chemical potentials presented. After the model isset, a finite element (FEM)
discretization is carefully performed and an iterative scheme to solve the resulting set of
nonlinear ODEs is suggested in Section 2. Hints on how to track the good behavior of solu-
tions are also given in this section. The main subject in thisreport, the split-step methods,
is introduced in Section 3. Three split-step methods are presented as the time discretization
in the solution algorithm and some properties and stabilityarguments are mentioned as well.
Section 4 describes the implementation and the tools utilized in the project. Here, some par-
ticular features of the code are explained in detail. The numerical experiments are presented
in Section 5 along with the methodology in use. The initial conditions are described and
specific arrangements for the solver parameters are explained. In Section 6 the outcome of
the work done in the project is discussed and some of the pros and cons of using split-step
methods highlighted compared to standard time-discretizations. After this, the smoothness
and well-behavior of the solution are shortly presented anddiscussed. In the final section
some general conclusions and future improvements are given.

2 Modelling surfactant in diffusive interface flow

The model starts from the non dimensionalized Cahn-Hilliard equation (1), that is well
known for modelling problems in areas such as medicine, metallurgy, new-material devel-
opment and complex problems in multy-phase fluid dynamics. This equation describes the
phase separation dynamics in a binary fluid through the use ofthephase-fieldvariableφ ∈
[-1,1]. Each extreme inφ represents a full phase, namely water or oil, and 0 delimits the
interface between the fluids. It has to be mentioned that the model describes the dynamics
of two incompressible and inmiscible fluids.

The non dimensionalized Cahn-Hilliard equation has the following form

∂φ

∂t
=

1
Peφ
∇

2

(

−φ + φ3
−

Cn2

2
∇

2φ

)

. (1)

The Cahn parameter (Cn) represents the thickness of the transition region of the phases in
the fluid, and the Peclet number (Pe) expresses the ratio between advection and diffusion of
the property observed in a non-dimensional frame.

One of the most important features of equation (1) is the conservation of mass, that can
be seen in systems with the form

∂φ

∂t
= ∇ · J . (2)

The inclusion of thesurfactant volume fractionψ ∈ [0,1] in the Cahn-Hilliard equation is
presented as further consideration within the model. The effect of Surfactants in the current
study is analyzed in very small quantities, such that its inclussion in the model do not modify
the final volume.



The system of equations (3) to be approximated here are deduced under the Landau-
Ginzburg free-energy framework of ideas and takes into account the presence of surfactant
as an agent modifying1 the Canh-Hilliard behavior of equation (1). The proposed system is

∂φ

∂t
= 1

Peφ
∇

2µφ ,

∂ψ

∂t
= 1

Peψ
∇ · [ψ(1− ψ)∇µψ] ,

(3)

whereµφ, µψ are the chemical potentials, namely,

µφ = −
Cn2

2 ∇
2φ − φ + φ3 + (1− φ2)ψφ + 1

2Exψφ ,

µψ = Pi log
ψ

1− ψ
−

(1− φ2)2

4
+ 1

4Exφ
2 .

(4)

Note in this case the distinction of Peclet numbers forφ andψ and the diffusive-like constant
Pi describing the diffusive rate ofψ. Clearly, the system (3) belongs to the family of stiff
PDEs.

Even though it is hard to set a closed definition ofStiffnessin ODEs, a common attempt
is to classify those ODE with terms that account for different time scales within a solution,
requiring extra analysis to set a correct time step for the solver. This is the case presented in
equations (6) showed below. There, two important time scales lie within the terms∇4 and
∇2 when the PDE is discretized in space by a standar numerical scheme, for instance FEM.
Stiffness means in short, that very small time-steps need to be resolved for, and the use of
explicit solvers would not be a suitable strategy for such problems.

1For a comprehensive derivation, see [En].

Figure 1: Plot for a particular solution in the Coalescing bubbles experiment with 20000
triangles showing a typical case for the phase fieldφ (left) and the surfactant volume fraction
variableψ (right).



Notice the convenient use of the log function when computingµψ by taking advantage of
the property

ψ(1− ψ)∇ log
ψ

1− ψ
= ∇ψ . (5)

From this, it is possible to rename the variables of interestin a more compact form

Φ = −Cn2

2 ∇
2φ − φ + φ3 + (1− φ2)ψφ + 1

2Exψφ ,
∂φ

∂t
= 1

Peφ
∇

2Φ ,

Ψ = −1
4(1− φ2)2 + 1

4Exφ
2 ,

∂ψ

∂t
= 1

Peψ

(

Pi∇2ψ + ∇ · [ψ(1− ψ)]∇Ψ
)

.

(6)

The resulting equations are part of the family ofGradient Systemsthat satisfy the criteria
given in [Ey]. This type of systems allow the splitting of theenergy incontractiveand
expansiveparts. It is possible to simplify considerably the numerical scheme by accounting
for different solution methodologies for contractive or expansiveterms. In the particular case
treated here, a gradient-stable algorithm is guaranteed under certain discretization conditions.
Some of these advantages are explained in detail in [Le]. Later in this report it is shown that
for low tolerances, typically up to 10−4, great performance can be obtained thanks to the fact
that the equations (6) show a system in gradient form.

3 FEM discretization in space

The first step towards a finite element discretization in space, is to rewrite the model system
of equations in variational form. To this end, the system (6)is multiplied by an arbitrary test
functionχ and then integrated over the entire problem domain (Ω).

∫

Ω

χΦ d3x = −Cn2

2

∫

Ω

χ∇2φ d3x+
∫

Ω

χ
(

−φ + φ3 + (1− φ2)ψφ + 1
2Exψφ

)

d3x ,

∫

Ω

χ
∂φ

∂t
d3x = 1

Peφ

∫

Ω

χ∇2Φ d3x ,

∫

Ω

χΨ d3x =
∫

Ω

χ

(

−
(1− φ2)2

4
+ 1

4Exφ
2

)

d3x ,

∫

Ω

χ
∂ψ

∂t
d3x = 1

Peψ

∫

Ω

χ∇ · (Pi∇ψ + ψ(1− ψ)∇Ψ) d3x .

(7)



Using the Green’s first identity and the Divergence theorem

∇ · (a∇b) = ∇a · ∇b+ a∇2b ,

∫

Ω

∇ · F d3x =
∫

∂Ω

F · n d2x ,
(8)

and applying homogeneous Neumann boundary conditions for those terms involving the
Laplacean operator in the first and second equations in (7), follows

∫

Ω

χΦ d3x = Cn2

2

∫

Ω

∇χ · ∇φ d3x+
∫

Ω

χ
(

−φ + φ3 + (1− φ2)ψφ + 1
2Exψφ

)

d3x ,

∫

Ω

χ
∂φ

∂t
d3x = − 1

Peφ

∫

Ω

∇χ · ∇Φ d3x .

(9)

Similarly as before, using the vector identity∇ · (χA) = ∇χ · A + χ∇ · A, the Divergence
theorem

∫

Ω

χ∇ · A d3x = −
∫

Ω

∇χ · A d3x+
∫

∂Ω

χA · n d2x , (10)

and finally using the boundary condition for the 4th equationin (7),

1
Peψ

(Pi∇ψ + ψ(1− ψ)∇Ψ) = 0 . (11)

The weak form then reads
∫

Ω

χΦ d3x = Cn2

2

∫

Ω

∇χ · ∇φ d3x+
∫

Ω

χ
(

−φ + φ3 + (1− φ2)ψφ + 1
2Exψφ

)

d3x ,

∫

Ω

χ
∂φ

∂t
d3x = − 1

Peφ

∫

Ω

∇ · χ∇Φ d3x ,

∫

Ω

χΨ d3x =
∫

Ω

χ

(

−
(1− φ2)2

4
+ 1

4Exφ
2

)

d3x ,

∫

Ω

χ
∂ψ

∂t
d3x = − Pi

Peψ

∫

Ω

∇χ · ∇ψd3x− 1
Peψ

∫

Ω

∇χ · ψ(1− ψ)∇Ψ d3x .

(12)

3.1 Galerkin method and spatial discretization

Here, take the ansatz
φ(x, y, t) =

∑

j

φ j(t)Nj(x, y); χ = Ni (13)

and similary forΦ, ψ andΨ. Then inserting this ansatz into the weak form (12) leads to



MΦ = Cn2

2 Kφ + f (φ, ψ) ,

M
∂φ

∂t
= − 1

Peφ
KΦ ,

MΨ = g(φ, ψ) ,

M
∂ψ

∂t
= − 1

Peψ

(

PiKψ + K′Ψ
)

,

(14)

with the standard definitions for the mass, stiffness and other nonlinear entities

Mi j =

∫

Ω

NiNj d3x , Ki j =

∫

Ω

∇Ni · ∇Nj d3x ,

fi =
∫

Ω

Ni

(

−φ + φ3 + (1− φ2)ψφ + 1
2Exψφ

)

d3x ,

gi =

∫

Ω

Ni

(

−
(1− φ2)2

4
+ 1

4Exφ
2

)

d3x ,

K′i j =
1

Peψ

∫

Ω

∇Ni · ψ(1− ψ)∇Nj d3x .

(15)

The variablesΦ andΨ are refferred to as the chemical potentials and the reason for having
introduced them as variables is due to the fact that thebasis functionsused in linear FEM
are only continuous, but not continuously differentiable and there is the need to reduce the
order of the PDE. Another reason is to avoid solving forΦ by using direct methods (M−1),
these lead to dense matrix problems that would be unnecessarily expensive. Instead, it is
possible as a first approximation to introduce alumpedmass matrixM with diagonal en-
tries2, whose inverse is straightforward to calculate and its use preserves the original sparsity
pattern, avoiding working with full matrices.

3.2 Numerical integration

For the numerical surface integration it is possible to discretize in space using theGauss-
Legendre quadrature

1
Ak

∫

Ωk

f (x, y) dx dy≈
∑

j

wj f (xj, yj) (16)

whereAk is the area of the triangleΩk, (xj , yj) the respective quadrature points andwj the
Gauss-Legendreweights.

2Under some regularity conditions on the mesh the use of lumped matrices give second order in accuracy



3.3 Nonlinear iterations

In general a nonlinear system of the form

M̃
∂y
∂t
= F (y) (17)

can be built for the system (14) by defining the new vector

y = (φ1, φ2, · · · , φn, ψ1, ψ2, · · · , ψn)
T . (18)

When discretized in time by first order forward finite differences, it is obtained

M̃(yn+1
− yn) = ∆tF (y) . (19)

Notice that the matrixM̃ is a diagonal block matrix containingM in each of its two entries.
Assuming the splittingF (yn, yn+1) = P(yn) + Q(yn+1) for the explicit and implicit terms,
yields

M̃(yn+1
− yn) = ∆t P(yn) + ∆t Q(yn+1) . (20)

Thus, the system to be solved for is

N = M̃yn+1
− M̃yn

− ∆t P(yn) − ∆t Q(yn+1) = 0 . (21)

Newton’s method to solve nonlinear problems consists of iterating over two steps. First,
computing a correctionδyk in the vector system

J δyk = −N(y) (22)

with Jacobian

Ji j =
∂Ni

∂yj

. After that, the solution is updated by computingyn+1
k+1 = yn+1

k + δk and repeat. Notice
that in the system (21) the variable to solve for isyn+1 and taking the derivatives of the
vectoryn vanishes, meaning that it has no impact on the Jacobian. Thisis the gain of using
explicit methods. However, as it has been said before, the fact that the resulting system is
stiff preventing us from using solely explicit methods. Nontheless, there are alternative ways
to put more weight into the explicit part to lessen the Jacobian computation.

3.4 Mass conservation

In the experiments shown in this project, there are no external sources or sinks of mass (phase
ψ). The evolution of the system is caused by relaxation, whichleads to reaccomodation
procesess due to the nature of the phenomena. Hence, the total phase of the system must
be preserved and its conservation will serve as a measurement of the error in the numerical
solution

∫

Ω

φ d3x =
∫

Ω

∑

j

φ jNj d3x = constant. (23)



Using the property
∑

i Ni = 1 for the FEM basis functions and inserting this into the mass
conservation integral yields

∫

Ω

∑

i

Ni

∑

j

φ jNj d3x =
∑

i

















∑

j

φ j

∫

Ω

NiNj d3x

















=
∑

i, j

Mi j φ j (24)

which can be easily calculated on each time-step.

4 Split-Step Methods

Usually the discretization in time can be performed by usingany of the standard methods,
such as the fully implicit Backward Euler (BE) method, or evaluating at an average with the
Midpoint Rule (MidP) method, Trapezoidal (TPZ) method or any other clever combination
of these. One approach that has been proposed [Ey], is to adopt a compromise between
explicit and implicit methods, taking advantage of the resulting form of the equations by
weighing the terms as a combination that leads to increasingperformance when used along
with an adaptative time-stepping scheme. For instance, a term (φn+1)3 is clearly an non-
linear implicit term and hence Jacobian evaluations are needed to solve it implicitly. The
same term can be written as (φn)2φn+1 transforming the latter term into a linear term for the
implicit solver, avoiding Jacobian calls when a Jacobian refactorization scheme is in use3.
Nonetheless, introducing such artificial terms increases the truncation error in the system.

The way that some terms are passed as explicit and some other as implicit into the solver
in (14), dependes on the nature of such terms (expansive or contractive). Linearity of the
implicit part means evaluating constant Jacobians, cheaper to calculate. This can be achieved
by passing some nonlinear terms in the implicit step to be part of the explicit part. Eyre
shows stability for these split methods and propose a set forthe Cahn-Hilliard equation
(1) that will be used and extended here. There is no unique wayto split the problem, but
some characteristics of the gradient flows [Ey] have to be taken into account due to stability
requirements. See in [Ey] the analysis of expansive and contractive terms in gradient-flow-
type problems.

It is aimed, to study the behavior of these ODEs under a combination of explicit and
implicit methods, giving different importance to each of the terms in the equation according
to the nature of the nonlinearity.’Split methods’is the name coined for this technique,
leading to different improvements in performance depending on the split used, for instance
reducing the number of function calls compared to standard methods. Even though choosing
the way that the split is done is not unique, it is possible to obtain valuable information about
the solution process and differences in explicit and implicit methods. Some common time
discretization methods for the Cahn-Hilliard equation canbe obtained by rewritting (1) in

3A complete description on Jacobian refactorizations and adaptative time-stepping schemes is given in [So1]
and [So2]



the form
Φ = −φ + φ3 −

Cn2

2 ∇
2φ ,

∂φ

∂t
= 1

Peφ
∇

2Φ ,

(25)

and then discretizing in time as follows

Φn = −φn + (φn)3
−

Cn2

2 ∇
2φn (26)

Next, some time stepping schemes are presented.

Backward Euler
φn

t =
1

Peφ
∇

2Φn+1 . (27)

Midpoint rule

φn
t =

1
Peφ
∇

2Φ

(

φn + φn+1

2

)

. (28)

Trapezoidal rule
φn

t =
1

2Peφ

(

∇
2Φn + ∇2Φn+1

)

. (29)

For the split-step methods presented in [Ey], a similar approach is used by changing the dis-
cretization for a combination of the formΦ∗(φn, φn+1).

Eyre’s split

Φ∗ = −φn + (φn)2φn+1
−

Cn2

2 ∇
2φn+1 . (30)

Semi-implicit

Φ∗ = −φn + (φn)3
−

Cn2

2 ∇
2φn+1 . (31)

Non-linearly stabilized

Φ∗ = −φn + (φn+1)3
−

Cn2

2 ∇
2φn+1 . (32)

Linearly stabilized

Φ∗ = −3φn + 2φn+1 + (φn)3
−

Cn2

2 ∇
2φn+1 , (33)

and computing afterwards a simple scheme for the time stepping

φt =
φn+1 − φn

k
= 1

Peφ
∇

2Φ∗ . (34)



4.1 Split-step methods for the surfactant

The system of equations in (14) is highly nonlinear, therefore, finding good split methods
is slightly more complicated than for the Cahn-Hilliard equation. In particular, the non-
constant mobilityMψ = ψ(1 − ψ) makes this task more difficult. However, it is possible to
mimic the most evident features of the split-steps presented before. In this study the follow-
ing three split methods are analyzed.

Semi-Implicit

µφ = −φ
n + (φn)3 + 1

2Exψ
n+1φn −

[

1− (φn)2
]

φnψn+1 −
Cn2

2 ∇
2φn+1 ,

µψ = −
1
4

[

1− (φn)2
]2
+ 1

4Ex(φ
n)2 + Pi log

ψn+1

1− ψn+1
,

Mψ = ψ
n+1(1− ψn+1) .

(35)

Non-linearly stabilized

µφ = −φ
n + (φn+1)3 + 1

2Exψ
n+1φn+1 − ψnφn + ψn+1(φn+1)3 −

Cn2

2 ∇
2φn+1 ,

µψ = −
1
4

[

1− 2(φn)2 + (φn+1)4
]

+ 1
4Ex(φ

n+1)2 + Pi log
ψn+1

1− ψn+1
,

Mψ = ψ
n(1− ψn) .

(36)

Linearized (Linearly-stabilized)

µφ = −φ
n + (φn)2φn+1 + 1

2Exψ
nφn+1 − ψnφn + ψn(φn)2φn+1 −

Cn2

2 ∇
2φn+1 ,

µψ = −
1
4

[

1− (φn)2
]2
+ 1

4Ex(φ
n)2 + Pi log

ψn+1

1− ψn+1
,

Mψ = ψ
n+1(1− ψn) .

(37)

Compared to the equations (4) it is clear that some nonlinearities have been changed in such
a way that there can be a gain in linearity of the implicit terms (φn+1, ψn+1) or the degree of
such nonlinearity is reduced.

5 Code features

The existing code FLOW was provided as the platform for testing split-step methods in the
sense of gradient flows (see [Ey]), as an approach to the solution of problems in two phase



flows. The MATLAB code for ODE1S and the FLOW package along with its functional-
ity were explained and the objective of the project was to present suitable solutions to the
surfactant in two-phase flows under split-step methods and to evaluate their efficiency in the
two-dimensional case.

The plataform for the implementation of this code was developed in MATLAB by us-
ing the tools provided within the PDETOOL package, which is astrong tool for solving
PDEs with Finite Element Method that contains several built-in definitions for solving stan-
dard PDE problems. The Delaunay triangulation is one of the strongest PDETOOL features
used in this project, which generates the best set of triangles by maximizing the angles in
each triangle (acute angles lower the accuracy of the spatial discretization). PDETOOL also
provides the fast assembly of the matricial objects in definitions (15).

As a first approximation, PDETOOL for FEM in MATLAB uses only one point quadra-
ture in the midpoint of each triangle. For a better accuracy more quadrature points need to
be considered.

Once the spatial discretization is set, the time stepping istaken care of by ODE1S, a
MATLAB implementation for computing the solution of systems of ODEs developed by
Stefan Engblom. ODE1S is a solver for stiff nonlinear ODEs that relies on several features
asJacobian refactorizations, Digital filters andtime step adaptivity4.

In order to use ODE1S as a solver, some modifications were implemented. For instance,
a counter carrying statistics of the solution, a sparsity pattern used for speeding up the nu-
merical Jacobians, the allowance of passing a mass matrix inthe ODE definition, a sparse
direct solver (LU) and an interface passing all the numerical objects to ODE1S for the spe-
cific problem (14). At first, ODE1S was using the BE method onlybut the extension to the
MidP method, TPZ method and split-step methods was a crucialdevelopment in this project.

As mentioned, the JacobianJ is calculated numerically by ODE1S using the matlab func-
tion numjac. A sparse patternS is a matrix with ones in the nonzero Jacobian arguments,
numjacis called according toS avoiding void calculations of zero entries. In ODE1S every
new time step comes as a result of an internal automatic comparison of three reference points,
where as a result, the new step length to be taken in order to mantain the desired accuracy is
returned. Significant understanding can be obtained from plots of number of function calls
vs the tolerance reached as a measurement of performance, see for example Figure 4.

6 Numerical experiments

In order to understand the dynamics of the behavior of surfactants in diffusive flows several
experiments are presented below. In all the experiments theinitial conditionψb is set to
be constant throughout the domain. This is an ideal approximation to be considered as an
academic experiment only. In reality it is impossible to achieve a constant concentrationψb

everywhere due to the boundary-tracing nature of the surfactants.

4For more details see [So1], [So2] and [Gu].



One difficulty that arises when dealing with nonlinear problems is toshow that a com-
puted numerical solution is sufficiently good. What makes this task even harder is finding
reliable results to make comparisons allowing the possibility to decide whether a solution is
well behaved or not. The model in equations (3) is developed in such a way, that the concen-
tration of the surfactant in the solution moves towards the regions whereφ = 0. This should
be the most important indicator that a solution is followingthe right path.

There are several ways to track the good behavior of a numerical solution, one of the
most important characteristics on gradient flows, is that the energy tends to decrease in the
process. In this way, each time step should show a decrement in the total energy of the system
following a relaxation process until a steady state phase isreached. Furthermore, the model
(3) describes a decrease of the surface tension due to the inclusion of the surfactant. This
relaxation would take longer times to complete than withoutinitial surfactant, similarly than
when a spring with a small elastic constant would last a longer period to complete a cycle
compared to a spring with a higher elastic constant carryingthe same weight. It is possible
to keep track of this relaxation time in the numerical simulation by setting a common point,
say the time when two bubbles first touch forming a 8-shaped figure (see figure 5, right).

Another valuable measurement that is used in this report, iskeeping track of the mass
conservation within the domain. For this, at each time step the quantity (24) is traced in
order to control how good a method performs regarding mass-conservation. Notice that
the Neumann-type boundary conditions used to build the weakform, account for the mass-
conservation in the system.

6.1 Experiments in 1D

The main interest in the current report lies in the correct implementation of the 2D spatial
discretization. For this, it is necessary to have a well proved initial example in 1D. The
work presented here is based on a solution provided by StefanEngblom, approximating the
equation (3) by using Legendre-spectral-methods for the discretization in space. The weak
form in that case has a similar structure that the one used forFEM. However, the 1D case is
built by using Legendre polynomials as test functions. The computational experiment was
set for a number of polynomialsnp= 100 and compared with a second run usingnp= 200
allowing to measure performance for two different sizes of the Jacobian matrix.

The initial conditions areφ(x, 0) = cos(2π x) + sin(π2 x) andψ(x, 0) = ψb. It is observed
in Figure (2) that whileφ tends to get stabilized into two well-behaved phases,ψ starts from
a constant value (left), moves to the regions whereφ = 0 (right) resulting in a narrow-
Gaussian-like peak centered in the final interface (down).Tracking always the regions where
φ = 0.

The experiment was run several times varying the required accuracy (TOL) from 10−3 to
10−7 in order to measure performance. The plot of TOL vs number of function calls (nfun)
is presented in Figure 3 and Table 1 shows data for the specificcaseTOL= 10−4.



Method nStpAccepted nFailIntTol nfun njac nlinsolve
BE 67 2 2153 8 551

MidPoint 54 0 1617 6 415
TPZ 52 0 1608 6 406

Semi-impl 93 0 1159 2 755
non-linStab 79 3 1934 6 732
Linearized 86 0 1550 4 748

Table 1: Statistics on the solution of the surfactant system in 1D using np = 100 with
TOL= 10−4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Case 7, Time t = 0.000000e+00

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Case 7, Time t = 1.804704e−02

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Case 7, Time t = 2.169808e+00

Figure 2: Evolution of the 1D surfactant problem forφ in blue andψ in red. Left: initial
conditions, right: showing the dynamics, down: stady statesolution.



6.2 Experiments in 2D

The first experiment is the planar version of the sinusoidal initial condition forφ given in the
1D case, of the formψ(x, y, 0) = cos(2π x) + sin(π2 x). The behavior of the solution remains
fairly similar as in the 1D problem.

The second experiment to be considered is the coalescence oftwo bubbles in a squared
domain of dimensionx, y ∈ [−1, 1]. The distance between the bubbles is set to be close
enough for them to experience coalescence. The expected behavior for this experiment is
that after the boundary of the bubbles come in touch, the surface tension then tends to lower
the energy by relaxing the surfaces ending up in a bigger bubble. The shape of the solution
remains quite similar in all cases for initial surfactant concentrations, but the presence of a
higher value ofψb impacts on the time scale of the solution, taking a longer time to complete
one characteristic period.

To illustrate this fact Table 4 shows some characteristic times taken by running the nu-
merical experiment with approximately 20000 triangles varying ψb for a number of choices
and registering the time needed for the bubbles to first touch, forming a 8-like boundary (see
Figure 5, right).

7 Discussion

The discussion starts by comparing the 1D problem to its 2D planar representation under the
same initial conditions. What is immediately apparent fromFigure 3 (up), is that the split
methods in the 1D case, are cheaper to use up to a limit of∼ 10−4.5 in relative error, bounded
by the crossing point where all the methods seem to perform similarly. When the number
of Legendre polynomials doubles fromnp = 100 tonp = 200, this crossing point moves to
rTol ≈ 10−5 (Figure 3, down), achieving one order higher in accuracy. When the number
of polynomials increases, the Jacobian of the system becomes costly to calculate and the
split-methods appear to be more efficient than the standard methods. Take for instance the
performance of the Semi-implicit with the lowest function calls n f un= 1159 in table 1, for
a TOL = 10−4 and only two of the Jacobian refactorizations. The split methods performed
better than BE method, MidP method and TPZ method in the region where 10−4 < TOL <
10−3.

From Table 1 it is clear that for the split methods the number of required time steps in-
creases. As discussed before, the truncation error is greater for the split methods5. This
makes ODE1S more suspicious producing shorter time steps, and hence, more of them com-
pared to standard methods.

As a first conclusion, the desired gain in performance is bounded in a region where the
split methods are cheaper and more efficient up to a point where the number of steps needed
become too many, causing the performance to drop.

The fact that the performance of the split-methods increases when the Jacobian of the

5For more a detailed reading see [Ey].



10
−7

10
−6

10
−5

10
−4

10
−3

10
3

10
4

10
5

rTol

N
 fu

n 
ca

lls

 

 
Euler Backward
Midpoint
Trapezoidal
Semi−impl
non−linStab
Linearized

10
−7

10
−6

10
−5

10
−4

10
−3

10
3

10
4

10
5

rTol

N
 fu

n 
ca

lls

 

 
Euler Backward
Midpoint
Trapezoidal
Semi−impl
non−linStab
Linearized

Figure 3: Plots showing rTol (x-axis) vs nFun (y-axis) in the solutions of the surfactant in
1D (6), for the first 100 Legendre polynomials (up), and 200 polynomials (down).



Method nStpAccepted nFailIntTol nfun njac nNit nLU it/stp
BE 179 0 14611 196 1869 398 10.441341

MidPoint 148 2 4003 37 1596 136 10.783784
TPZ 142 7 12841 172 1659 341 11.683099

Semi-impl 208 3 4775 32 2693 118 12.947115
Linearized 195 2 3378 15 2401 88 12.312821

Table 2:Statistics on the solution of the planar surfactant system in 2D using20000triangles
with TOL= 10−4.

Method nStpAccepted nFailIntTol nfun njac nNit nLU it/stp
BE 248 9 18043 230 3091 473 12.463710

MidPoint 615 10 9611 19 8374 126 13.616260
TPZ 181 6 18334 243 2537 432 14.016575

Semi-impl 847 8 13365 19 12128 124 14.318772
Linearized 883 15 13386 11 12669 120 14.347678

Table 3:Statistics on the solution of the planar surfactant in 2D using 20000triangles with
TOL= 10−5.

system is twice larger, permits to justify their use in higher dimensions or in cases where
Jacobian evaluations are more expensive. This is the main motivation for moving into the
2D.

Looking at Table 2, it is evident the Linearized great performance with only 3378 func-
tion calls and only 15 Jacobian refactorizations, producing 195 time-steps for a relative tol-
erance of 10−4 (inside the high performance gap), which is a good accuracy for general
purposes. The MidP, as the second preferred, requires 4003 function calls and 37 Jacobian
refactorizations resulting in 148 time-steps. Note that even though the Linearized performs
better than the MidP it has to take more time-steps as explained before.

The above said is not the case forTOL = 10−5 (outside the high performance gap)
in Table 3, where the top method is the MidP with 9611 functioncalls and 19 Jacobian
refactorizations, followed by the Semi-Implicit with a higher number of 13365 function calls
but the same 19 Jacobian refactorizations. However, the latter performes better than the
TPZ, who took 18043 function calls and 243 Jacobian refactorizations, being large numbers
compared to the two first methods mentioned before.

Proving performance is not enough evidence to assert whether a method is behaving
properly or not. To illustrate this, Figure 6 (down) shows a histogram of the mass of the
system defined in (24) along the time steps for 5000 trianglesin the 2D problem. What is
significantly apparent from this figure is that the TPZ and theLinearized present curves that
remained fairly constant throughout each time step. Hence,they conserve the mass of the
system in higher accuracy, proving to be more stable than therest of the considered methods.

Another alternative way to confirm the good behavior of a numerical solution is deduced



10
−5

10
−4

10
−3

10
2

10
3

10
4

rTol

N
 fu

n 
ca

lls

Planar sinusoidal

 

 
Euler Backward
Midpoint
Trapezoidal
Semi−impl
Linearized

10
−4

10
−3

10
−2

10
2

10
3

10
4

10
5

10
6

rTol

N
 fu

n 
ca

lls

 

 
Euler Backward
Midpoint
Trapezoidal
Semi−impl
Linearized

Figure 4: Performance plots for the 2D surfactant problem. Up: Planarexperiment with
5000 triangles. Down: Coalescing bubbles experiment with 20000 triangles.



by the physics of the phenomena. Figure 6 (up) depicts the relaxation time (Table 4) in which
two air bubbles under water, withψb as the initial concentration of surfactant, collide (see
Figure 5). It is apparent that for a concentration 0< φb < 0.25 the relaxation time appears to
have an exponential behavior (approximately linear in the logarithmic Figure 6, down).

8 Conclusions

The split methods as an approach to solve nonlinear problemspresent an alternative way
to reduce the cost per iteration compared to fully implicit solvers. They preserve important
characteristics of gradient flows as for example conservation of mass. The main idea is
to combine implicit and explicit terms in such a way that the computational cost can be
reduced. The lost is in truncation error, becoming evidently for lower relative erros than 10−4

in this work. For higher relative errors the split methods perform better than the conventional
techniques.

The analysis done in the coupled surfactant-phase field problem showed that the advan-
tages of the split methods lie in the cost per Jacobian evaluations. Greater performance can
be seen with the split methods when the cost of Jacobian evaluations is increased, therefore,
the improvement seen in the 1D case is not as dramatic as in higher dimensions.

It is shown how the use of split-step methods in 1D leads to a cheaper numerical solution
up to a relative tolerance of 10−4.5. When the number of the polynomials used is doubled, the
tendency is to perform even better, that is up to 10−5 resulting most suitable for problems with
expensive Jacobian calculations. This last fact motivatesworking with higher dimensions
where the Jacobian is far more expensive than in the 1D case.

As expected, the 2D case follows the same trend of ideas as in the 1D case. However, the
linearized-split offers in both cases (Figure 4, up with 5000 and down with 20000 triangles)
a better performance than the rest of methods. The semi-implicit and the MidP show similar
performance than the TPZ or BE with 5000 triangles.

For 20000 triangles, the BE or TPZ perform poorly compared tothe other three methods.
Justifying the initial motivation for the use of the split-methods in higher dimensions. On the
other hand, the MidP presents fairly similar results to the semi-Implicit but showing better
stability.

As a final overview of the course, I gained valuable knowledgeon solving systems of non-
linear PDEs numerically, and learnt from the correct implementation of the Newton method
for implicit solvers among several other details in an automatic schemes based on a poste-
riori error bounds. The differences between explicit and implicit time discretizations were
reinforced along the course and new trends in cutting-edge solvers were introduced. The im-
plementation of a model problem by using finite element methods deepened the knowledge
obtained in former courses within the MSc in Computational Science programme.



Figure 5: Diagrams for an arbitrary solution in the Coalescing bubbles experiment with
20000 triangles showing the smoothness of the solution. Right: 8-like shape when the bub-
bles first touch in the coalescence process.

ψb tc ψb tc
0 0.3705 0.2250 2.3285

0.0250 0.5328 0.2500 3.4656
0.0500 0.5230 0.2750 5.1274
0.0750 0.7452 0.3000 7.5394
0.1000 0.7559 0.3250 13.5625
0.1250 1.0630 0.3500 24.9005
0.1500 1.0871 0.3750 57.4483
0.1750 1.5510 0.4000 140.2650
0.2000 1.5960 - -

Table 4:Relaxation times in the coalescing bubbles under the precence ofψb surfactant with
a resolution of 5000 triangles and a tolerance of TOL= 10−3.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

−1

10
0

10
1

10
2

10
3

Relaxation time (Surface tension)

ψ
b

t c

0 200 400 600 800 1000 1200
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−4

time step

M
as

s

Mass Conservation

 

 

Euler Backward
Midpoint
Trapezoidal
Semi−impl
Linearized

Figure 6:Up: Relaxation times in the bubbles coalescencing experiment for initial concen-
trationsψb with 5000 triangles and TOL= 10−3. Down: Conservation of mass in the system
according to the solution-method in use.



8.1 Future work

The field of possible improvements deimited by this proyect is broad and extensive. Cur-
rently, ODE1S solves the linear system (22) by using a sparseimplementation of direct
solvers provided by MATLAB. Long delays were experienced when calculating the solu-
tions for a large number of triangles. An iterative solver like GMRES would be preferable
to the current LU decomposition, since GMRES accounts for the sparsity of the matrices.
Nonetheless, a study on suitable initial guesses must follow. For instance, an incomplete LU
could serve as a good starting point. Another possibility todecrease the computational cost,
is to provide user-computed-Jacobians to ODE1S that servesto replace the current numJac
boosting the algorithm.

When controlling the error, ODE1S estimates the size of the new time-step by using L2-
norms on the solutionφ andψ. A better approach is to consider a energy-norm derived from
the physical system.

The paralelization of the code is a non-trivial task to be implemented, for the code in
ODE1S needs to be parsed to C or C++ before coding in OMP, PThreads or MPI. However,
it is definitely an important point for future improvements.

Another idea to avoid the use of a lumped matrix in the solution of (14) is to use high
order basis functions, namely the Lagrange-cubic-basis prevents the system from being split
in two stages due to lack of smoothness and continuity of the solution. Other kind of high-
order basis functions are the Hermite polynomials, which includes an approximation for the
derivatives as degrees of freedom. The use of the latter not only avoids the use of artifi-
cial inclusion of new nodal points, like in the higher order Lagrange polynomials, but also
increases considerably the accuracy of the method.

As a first approach to the advective problem in fluid flows a static advective matrix can
be implemented, meaning that the presence of surfactant northe behavior ofφ will be con-
sidered as sources altering the velocity field. Here, a comprehensive study should follow in
order to guarantee the conservation of mass in the system. A rigorous stability analysis of the
system is necessary at this stage since FEM is proven to be unstable for advective problems.

A further step in the latter direction would be to investigate the effects of surfactant
on the velocity field. For this research topic, coupling equations (3) to the incompressible
Navier Stokes equations is a necessary stage that requires an extensive code development.
In an earlier work done in [En] it was proven that the bubbles can bounce away from each
other instead of the coalescing experienced in the current project. The resulting bouncing is
caused by alterations of the velocity field due to the presence of high concentrations of the
surfactant.

Adaptivity is an elaborated solution, which consists in increasing the computational
power in the regions where the boundary (φ = 0) is located, making the mesh finner and
avoiding extra effort in the domains were the solution is sufficiently smooth.



References

[En] S. Engblom, M. Do-Quang, G. Amberg, A-K. Tornberg.On modelling and simulation
of surfractants in diffuse interface flow, Dept of Scientific Computing Uppsala Univer-
sitet, Jun 2011.

[Ey] David J. Eyre,Unconditionally gradient stable time marching the Cahn-Hilliard equa-
tion, Dept of Math. University of Utah, May 1998.

[Le] Vladimir Lebedev and Alene Sysoeva,Unconditionally gradient-stable computational
schemes in problems of fast phase transitions, Physical Review E 83, 026705, 2011.

[Gu] Kjell Gustafsson and Gustaf Söderlind,Control strategies for the iterative solution of
nonlinear equations in ode solvers, SIAM J. Sci Comput. Vol 18, No 1, Jan 1997.

[So1] Gustaf Söderlind and Lina Wang,Adaptive time-stepping and computational stability,
Journal of Computational and Applied Mathematics, March 2003.

[So2] Gustaf Söderlind,Digital filters in Adaptive time-stepping, ACM Transactions on
Mathematical Software, Vol. 29, No. 1, March 2003.




