
Institutionen f�or informationsteknologi

Parallel Global Optimization of
ABB's metal process models using
Matlab

Adam Sax�en, Karl Bengtsson Bernander

Project in Computational Science: Report

January 2014

P
R
O
J
E
C
T
R
E
P
O
R
T

Contents

1 Introduction 3
1.1 Goal . 3
1.2 The ADM - Hot rolling . 3

2 Theory 3
2.1 Optimization . 3
2.2 Optimization methods . 5

2.2.1 Gradient based methods 5
2.2.2 Direct Search methods . 6
2.2.3 Challenges . 6

2.3 Optimization methods in Matlab 7
2.3.1 Local optimization solver - fmincon 7
2.3.2 Global optimization solvers - MultiStart, GlobalSearch

and Patternsearch . 9

3 Method 10
3.1 Matlab framework . 10

3.1.1 Testing environment . 11
3.1.2 The Run framework . 11
3.1.3 Solver exitflags . 12

3.2 Establish a reference solution . 12
3.3 The solvers . 13

3.3.1 MultiStart . 13
3.3.2 GlobalSearch . 13
3.3.3 Patternsearch . 13

4 Results 14
4.1 Establish a reference solution . 14
4.2 Gradient-based global solvers . 16

4.2.1 Multistart . 16
4.2.2 GlobalSearch . 19

4.3 Patternsearch . 20
4.3.1 Systematic approach . 20
4.3.2 Genetic Algorithm . 21
4.3.3 Supplementary tests . 22

5 Discussion 23
5.1 MultiStart . 23
5.2 GlobalSearch . 24

5.2.1 Mex files . 25
5.3 Patternsearch . 25

5.3.1 Convergence problem . 25
5.3.2 Speedup . 26

6 Conclusions 26
6.1 Current state . 26
6.2 Directions for future work . 27

7 Acknowledgement 28

1

A Appendix 28

B Appendix 29

2

1 Introduction

The focus of this report is on analysing three of Matlab’s global optimization
solvers when applied to a mathematical model of an industrial process called hot
rolling. The problem to be optimized can be described as a non-convex, non-
linear optimization problem with linear and nonlinear constraints. The report
covers implementation of the solvers and performance analysis.

1.1 Goal

Our goal is to investigate three of Matlab’s global optimization solvers when
applied to ABB’s ADM (Adaptive Dimension Model), and evaluate their per-
formance in terms of accuracy, execution time and parallel speedup; accuracy
measures how consistent a solver is in finding the global minimum; an accuracy
of 50 % means that the global minimum is found in 50 % of the runs.

Choosing a solver that performs well is challenging, where the best configuration
heavily depends on the problem at hand. This research is an important step
to achieve a larger goal set by ABB, to be able to perform high performance
optimization on the cloud.

1.2 The ADM - Hot rolling

Adaptive Dimension Model, for short ADM, is a thermo-mechanical model
which describes hot rolling, a type of metalworking process. During the process
metal slabs are heated and the reshaped by passing the metal through a series
of stands with pairs of rolls. The end product consists of long pieces of cooled
metal, fitted for a new purpose.

As with all industrial processes the goal is to produce a good quality product
while minimizing production cost. There are many parameters for the process,
such as roll gap and rolling speed, and these are referred to as the rolling sched-
ule. Finding a suitable schedule, in terms of e.g. low power consumption, proves
hard and costly if done by trial and error. The ADM helps the operators to find
the optimal rolling schedule based on what asset they want to optimize.

2 Theory

2.1 Optimization

In this report optimization refers to numerical optimization, i.e a mathemati-
cal technique to find optima, minimum/maximum values, of a function. The
problem to be optimized is defined by an objective function, f(x), subject to a
set of constraints that limit the domain of acceptable vectors of optimization
variables x. The standard optimization problem, by convention, is defined as a

3

minimization problem

minxf(x)

s.t Gi(x) = 0, i = 1, · · · ,m (1)

Hj(x) ≤ 0, j = 1, · · · , n
xl ≤ x ≤ xu

where Gi are equality constraints and Hj are inequality constraints. These con-
straints can be linear or nonlinear, where the last constraint of eq.(1) shows
the upper and lower bounds of x which is linear. A vector xl ≤ x ≤ xu, that
satisfies Gi and Hj ∀i, j is called a feasible point. All points that are feasible
belong to the feasible set or feasible region and is denoted D.

A feasible point is called a local optimizer x∗ if f(x∗) ≤ f(x) holds for all x in
the feasible region confined by |x− x∗| ≤ δ, δ > 0 (i.e. in some region around
x∗ all function values are greater than or equal to the value at the optimizer).
A global optimizer has the same definition but the confined region will be equal
to the entire feasible set D. An optimum is referred to as the pair (x∗, f(x∗)).
Figure 1 illustrates these concepts in one dimension.

Figure 1: Global optimum and local optimum for an arbritary function with a
feasible set in one dimension

Optimization problems are classified depending on the characteristics of the ob-
jective function f(x) and the constraints Gi, Hj , xl ≤ x ≤ xu. For example if
no constraints exist then eq. (1) is referred to as an unconstrained optimization
problem, otherwise the problem is known as a constrained optimization prob-
lem. Nonlinearity and linearity of f(x) and the constraints are an important
part when classifying the problem. When linear constraints and a linear objec-
tive function exist the problem can be solved with well studied methods like the
Simplex Method.

Nonlinear problems on the other hand require a more sophisticated approach.
The method of Lagrangian multipliers is one example of a method that han-
dles nonlinear f(x) and nonlinear constraints. The method finds feasible points
that fulfill the first order optimality conditions, i.e. a neccessary but not suf-

4

ficient condition for optimality. The conditions are called the Karush Kuhn
Tucker(KKT) conditions1

∇f(x) +

m∑
i=1

λi∇Gi(x)+

n∑
j=1

µj∇Hj(x) = 0 (2)

Gi(x) = 0, i = 1, ...,m (3)

Hj(x) ≤ 0, j = 1, ..., n (4)

µj ≥ 0, j = 1, ..., n (5)

µjHj(x) = 0, j = 1, ..., n (6)

Lagrangian multipliers λi and µi make it possible to combine the contraints Gi

and Hi, with the objective function f(x). Equation(2) implicitly states that the
gradients of f(x) and the gradients of the constraints are parallel; this does not
imply that the vectors are of the same magnitude, thus λi and µ are required
and scales the gradients in order to fulfill the condition. µi regulates when the
constraints Hj are active(i.e. act as equality constraints). If an optimizer x∗

activates a constraint Hj the gradients,∇f(x) and ∇Hi(x), with respect to x
have opposite directions which implies that µ must be positive. The last eq.(6)
is the complementary slackness condition.

The ADM solves constrained nonlinear optimization problems and tries to find
a local optimum, i.e. sub-optimal rolling schedule (optimizer) and optimal ob-
jective function. The optimization variable x is a 33-dimensional vector. This
classification determines the choice of solution methods.

2.2 Optimization methods

There exists multiple methods for finding optimum points, such as evaluating
gradients in order to descend towards the optimum or by computing and com-
paring function values according to certain patterns. Regardless of what method
is used, an initial point x0 needs to be supplied. This point will act as the start-
ing point from where the method descends towards the optimum; x0 should be
feasible.

2.2.1 Gradient-based methods

As the name suggests, these methods use the first and second derivative, Ja-
cobians and Hessians, to find local minima. There are several methods where
two will be mentioned in this report, namely Sequential Quadratic Program-
ming(SQP) and the Active-set method. These methods are well suited to solve
the constrained nonlinear optimization problems of this project.

Both SQP and Active-set solve a sequence of Quadratic Program subproblems
in order to find a local optimum. The methods use the Lagrangian method with
KKT eq.(2) and transforms the original nonlinear optimization problem into a

1(Kuhn, H. W.; Tucker, A. W. (1951). ”Nonlinear programming”. Proceedings of 2nd
Berkeley Symposium. Berkeley: University of California Press. pp. 481-492. MR 47303)

5

Quadratic programing subproblem

mind
1

2
dTHkd+∇f(xk)T d

s.t. ∇Gi(xk)T d+Gi(xk) = 0, i = 1, ...,m (7)

∇Hj(xk)T d+Hi(xk) ≤ 0, j = 1, ..., n

The subproblem is an approximation obtained by linearizing constraints and
approximating the modified objective function (lagrange function) quadratically.
For every iteration k a new Hessian Hk is computed and the subproblem (7), is
solved. The search direction dk is used to form a new point closer to the local
optimum:

xk+1 = xk + dk

The process is iterated to construct a sequence of subproblems that in theory
will converge to a local optimizer x∗.

Gradient-based methods are limited by the requirement that the objective func-
tion and constraints are continuous and have continuous gradients. The ADM
exhibits discontinuities that are made continuous using a smoothing technique.
The next type of methods called Direct search methods don’t need the gradient
or Hessian when finding an optimum.

2.2.2 Direct Search methods

Direct Search methods do not use any information about the gradient. Instead,
they systematically search the area near the current point, looking for feasible
points with lower objective function value.2 There are many different techniques
of searching the feasible set, where the choice depends on the problem at hand.
In general, these methods can be preferred in situations where the objective
function is not differentiable. However, since no directional information is used
from the gradient, the methods could exhibit poor convergence to the global
minimum.

2.2.3 Challenges

In non-convex optimization a hard problem is to determine if an optimum also is
the global optimum. There are several ways to solve this problem, but in short
it comes down to searching the set D as thoroughly as possible. This could, for
example, mean applying a method multiple times for multiple initial points and
comparing local optima, or based on a single initial point search D in a manner
that efficiently covers the entire feasible set. Regardless of how the search is
done the found solution will with higher probability be the global optimum.

There are a vast set of methods available. To solve an optimization problem
with one method can be straight forward, but finding and tuning a method that
solves it efficiently is a challenge, and requires indepth analysis and testing of

2http://www.mathworks.se/help/gads/what-is-direct-search.html

6

http://www.mathworks.se/help/gads/what-is-direct-search.html

many methods applied to the problem. There exists no shortcut, every new
optimization problem needs to be analyzed separately.

2.3 Optimization methods in Matlab

The ADM is implemented in Matlab and is solved with a local method called
fmincon. This predetermines that all methods used in this report will run in
Matlab. There exists a couple of Matlab toolboxes that contain optimization
methods, and they will be referred to as solvers in this report.

2.3.1 Local optimization solver - fmincon

The fmincon solver is a gradient-based method used to find the local minima of
constrained non-linear multi-variable functions. Fmincon begins from an initial
guess, iterates according to a given update scheme, and finishes when a stopping
criteria is met. The final iteration is a local minimum if the first-order neces-
sary and second-order sufficient conditions are fulfilled, where the second-order
condition states that the Hessian must be positive definite. It is worth to note
that fmincon often can handle an infeasible starting guess by solving a linear
programming problem for the initial guess and the constraints.

The update scheme depends on the sub-algorithm used by fmincon, of which
there are four: SQP, Active-set, interior-point and trust-region-reflective. The
last requires a pre-defined gradient, which does not exist in the ADM, and is
therefore not explored. All schemes rely on using the gradient to find a descent
direction.

SQP (Sequential Quadratic Programming) and Active-set both use the Quadratic
program subproblem (7) that approximates an optimization problem trans-
formed by the Lagrangian method and KKT eq.(2). The sub-algorithms follow
the same procedure:

1. Compute the gradient and update the Hessian Hk of eq.(7) using the
BFGS update scheme.

2. Set up and solve a quadratic program to find descent direction

3. Perform line search to find a proper step length in the descent direction

The HessianHk is computed using a quasi-Newton update scheme called BFGS3.
The method is called quasi-Newton since it does not computed Hk exactly but
approximate it with BFGS:

Hk+1 = Hk +
qkq

T
k

qTk sk
− Hksks

T
kH

T
k

sTkHksk
(8)

3Broyden-Fletcher-Goldfarb-Shanno

7

where

sk = xk+1 − xk
qk =∇f(xk+1)−∇f(xk) (9)

= ∇f(xk+1) +

m∑
i=1

µi∇Gi(xk+1) +

n∑
j=1

λj∇Hj(xk+1) (10)

− (∇f(xk) +

m∑
i=1

µi∇Gi(xk) +

n∑
j=1

λj∇Hj(xk))

Solving the subproblem is done in two steps. First feasibility is checked, if it
fails, a feasible point is calculated by solving a linear programming problem for
the point and the constraints. The second step involves the generation of an
iterative sequence of feasible points that converge to the solution. Finally, a line
search is used to take an appropriate step length by scaling the descent direction
dk with α for the next iterate:

xk+1 = xk + αdk (11)

Both subalgorithms ensure that the Hessian Hk is positive definite by setting
the initial H0 Hessian to be positive definite.

There are some differences between SQP and Active-set; Active-set can take
intermediate infeasible steps outside bounds, which could be unbeneficial if the
objective function or constraints are undefined or complex outside the feasible
region; SQP can, during its iterations, take a step that fails. This means that an
objective function or constraint returns the value Inf, NaN or a complex value.
If this happens SQP will attempt to take a smaller step. The linear algebra
routines used to solve the QP subproblem are more efficient in terms of memory
usage and speed for SQP than for Active-set.

The interior-point subalgorithm approaches the solution from interior of the
feasible region, by replacing the QP with a barrier method which is solved for
decreasing µ.4

At every iteration the algorithm can use one of two steps to find an optimum,
called direct step and conjugate gradient step. The direct step tries to solve the
KKT eq:(2) via a linear approximation. Conjugate gradient step uses a trust
region approach where f(x) in eq:(1) is approximated with a new function p
that behaves similar to the original function f(x) in a neighbourhood N of the
current point x. This neighbourhood is called the trust region.

Fmincon has a parallel mode for the computation of gradients. For more infor-
mation about fmincon and its subalgorithms see footnote.5

4Optimization toolbox user guide 2013, Mathworks
5http://www.mathworks.se/help/optim/ug/fmincon.html and

http://www.mathworks.se/help/optim/ug/choosing-a-solver.html

8

http://www.mathworks.se/help/optim/ug/fmincon.html
http://www.mathworks.se/help/optim/ug/choosing-a-solver.html

2.3.2 Global optimization solvers - MultiStart, GlobalSearch and
Patternsearch

Multistart, as the name implies, runs fmincon from multiple starting points. The
results of each fmincon run is saved in a vector, and in the end the best result
is selected as the global minimum. Multistart can use other local solvers beside
fmincon, such as fminunc and lsqnonlin, but only fmincon will be considered
since its the only local solver that handles constrained problems. Paralleliza-
tion of Multistart performs well since the individual runs are independent; the
different runs can easily be divided among multiple CPU:s.

The solver executes a number of starting points k. The points are supplied
by creating k − 1 random uniformly distrbuted points within the upper and
lower bounds of the optimization problem, without necessarily fulfilling the
constraints. The last point x0 is supplied as an parameter to Multistart. For
the ADM, with its many nonlinear constraints, the generated points are most
likely not feasible.

GlobalSearch, like Multistart, uses fmincon to find the global minimum, but in
a more sophisticated way. The solver needs an initial starting point x0 and a
set of potential starting points, generated with a scatter-search algorithm. The
solver scores a subset of the points by running a score function, defined as the
sum of the objective function at a point and a multiple of the sum of the con-
straint violations. GlobalSearch will initially run fmincon for two points, x0 and
the subset point xs1 with the lowest score.

In the next step GlobalSearch creates two basins, assumed to be spherical, with
x0 and xs1 as centers. Two counters are associated to the solver and keep track
of how many points lay within a basin of attraction and how many that have a
score function greater than a certain threshold t. The solver can now determine
if a trial point p should be evaluated by fmincon. The following criteria need
to be fulfilled in order to run fmincon for point p:

• p can’t be in any existing basin

• the score of p must be less than the threshold t

GlobalSearch repeatedly examines the list of trial points and throws away points
that don’t generate a better solution. It will finish when it runs out of trial points
or when a predefined maximum time is reached. Globalsearch has no built in
support for parallelism, but supports the parallelism of fmincon.

In Matlab the direct search methods are implemented in the Patternsearch
solver, named after how it searches for new points in a pattern around the cur-
rent point. This pattern is made up of a set of vectors which can be fixed or
randomized for each iteration, depending on the search algorithm. The vectors
are multiplied with a scalar multiple, generating a mesh of so called candidate
points. The next point is selected by testing for feasibility and a lower objective
function value. Either the first successful candidate point is chosen, or the low-
est among all is chosen (complete polling). If no point is feasible or has lower
objective function value, the mesh is contracted. If a feasible point with lower

9

objective function is found (xsuccess), the next point becomes the xsuccess and
the mesh is expanded. This continues until the stopping criteria are met.

Patternsearch is highly customizable with parameters controlling e.g. the search
algorithm, complete polling and mesh contraction/expansion rates. Also, a poll
and search algorithm can be used in a consecutive manner to further improve
the search. If the poll method finds a successful point, the search method will
be skipped.

If non-linear constraints are present, the Augmented Lagrangian Patternsearch
is used, where nonlinear and linear constraints are handled separately. The
nonlinear constraints are combined with the objective function and penalty pa-
rameters using the Lagrangian method to formulate a subproblem. The solver
then minimizes a series of subproblems, updating the Lagrangians or penalty
factor depending on whether or not a solution is found. The initial penalty and
increase factors are input parameters to Patternsearch 6.

3 Method

The method for reaching our goal can be viewed as consisting of the following
steps:

• Implement the three global solvers as a framework in Matlab

• Analyse fmincon and establish a reference solution

• Analyse - parameter selection, testing, accuracy, speedup etc

– MultiStart

– GlobalSearch

– Patternsearch

Parameter selection means systematically exploring the parameter space for
each global solver; to find and focus on performance dependent parameters.

There are two objective functions that will be used during the project: objective
function 63 and objective function 71. They represent power per production
speed and grain size, respectively.

3.1 Matlab framework

Since ADM is implemented in Matlab, it can utilize the built-in toolboxes for
optimization and parallelization. The framework also uses mex files which allow
non-Matlab code (C,C++,python) to be invoked in the model; certain functions
are computationally heavy and are improved by being replaced by mexed files.
Lastly, the framework contains three toolboxes shown in Table 1.

6http://www.mathworks.se/help/gads/description-of-the-nonlinear-constraint-solver_

bqf9jvg-1.html

10

http://www.mathworks.se/help/gads/description-of-the-nonlinear-constraint-solver_bqf9jvg-1.html
http://www.mathworks.se/help/gads/description-of-the-nonlinear-constraint-solver_bqf9jvg-1.html

Table 1: The toolboxes used and what they contain
Toolbox Description

Optimization toolbox Used for finding local minimums (fmincon)

Global optimization toolbox Contains Global solvers

Parallel computing toolbox Used to run solvers in parallel

3.1.1 Testing environment

The framework was run on a server at the IT Department, Uppsala Univer-
sity. All results presented in this report have been created with the following
computer specifications:

• CPU: AMD Opteron (Bulldozer) 6282SE, 2.6 GHz, 16-core, dual socket

• Memory: 128 GB

• Operating system: Scientific Linux 6.3

• Matlab 2012b

Uppsala University has a license for running up to 12 workers in parallel.

3.1.2 The Run framework

The run framework was developed in this project to enable the user to easily
switch between different global solvers and change the degree of parallelization,
without having to alter the code. The user configures a ’run’ by assigning a
set of parameters in run setup.mat. The possible parameters to vary are shown
in Table 2. The user can define several ’runs’ that the framework then will
perform unsupervised. To start the program the user types Start Run Frame-
work.m. The number of optima found, execution time and more results are
stored in run results.mat.

In Table 2, Id is a number for keeping track of a specific test, parallel is how
many workers are used, and solver is one of the three global solvers. Smooth
and relaxation are parameters relating to the physics in the ADM; where smooth
is how much discontinuities should be smoothed and relaxation is how strict the
equality constraints are. The rest of the parameters are specific to fmincon or
for each global solver. More information about what the parameters are can be
found in Mathwork’s Global optimization User guide 2013.

11

Table 2: Possible parameter selection for the global optimization solvers in ’the
run framework’
General Multistart GlobalSearch Patternsearch

id ms numInitPt gs basinRadiusFactor ps cache

solver gs numStageOnePoints ps completePoll

algorithm gs numTrialPoints ps completeSearch

tolX gs penaltyThresholdFactor ps initialPenalty

tolFun gs maxWaitCycle ps meshAccelerator

tolCon gs startPointsToRun ps meshContraction

parallel gs distanceThresholdFactor ps meshExpansion

maxIter ps penaltyFactor

smooth ps pollMethod

relaxation ps searchMethod

maxFunEvals ps tolMesh

tolBind

The choice of parameters to test is based on what is believed to affect the
performance of the solvers, after studying how the solvers work according to
Mathwork’s global optimization toolbox user guide 2013.

3.1.3 Solver exitflags

Exitflags are an output from the solvers implemented in Matlab. It is an in-
teger identifying the reason why a solver terminates. For example an exitflag
of 1 when running fmincon indicates that the solver exited because of a local
optimum was found. There are several integers for different solvers and algo-
rithms, but in general a positive exitflags indicates a successfull run with a local
or global minimum found. Negative integers mark that no minimum was found,
not finding feasible points, or errors occuring in the solver. More information
about exitflags can be found in Mathworks global optimization toolbox and
optimization toolbox user guides.

3.2 Establish a reference solution

A reference solution is needed to evaluate the performance of the solvers. Be-
fore this is done fmincon needs to generate reliable results, since it is a part
of both MultiStart and Globalsearch. The default parameter settings for the
ADM are used and the tolerances and optimization algorithms are varied to see
how the local solution is affected. The ADM automatically generates a feasible
initial point x0 and since fmincon later, through global solvers, runs for multi-
ple feasible and most likely infeasible random points, there is an interest to see
how the algorithms affect execution time of fmincon for different feasible and
infeasible x0. Running Mulitstart for 10 points, x0 and 9 random start points,
and taking the average execution time of succesfull runs(i.e runs that return a
positive exitflag) an performance estimate of the algorithms can be done.

12

Then Multistart will run with the found parameter settings for a very large
number of starting points, both for objective function 63 and 71; Mathworks
recommends increasing the number of start points as a thourough approach for
finding a better solution.7 GlobalSearch will also be used for a similar amount
of trial points. This should increase the probability of finding the global opti-
mum, since Multistart and Globalsearch generate and test the points in different
ways.8 The global reference solution will be regarded as the best global mini-
mum found, either by Globalsearch or Multistart.

3.3 The solvers

The first priority when analysing the solvers is to find parameters that result
in high accuracy, i.e. consistent in finding the global minimum. Then comes
execution speed and finally speedup, where the solvers parallel scalability will
be tested.

3.3.1 MultiStart

Multistart runs fmincon for each of the n random initial values. The number of
n needed to find the global minimum with high probability is then calculated.
This is done with a convergence test, i.e. determining the distribution of how
many points converge to the global optimum, how many fail etc. This also yields
information about the accuracy of Multistart.

Parallelization is built into Multistart and runs several fmincon calls simultane-
ously, one for each worker. The support is activated by setting the parameter
parallel in run setup.mat to a number larger than 0. The value represents the
number of workers to be used; where 0 means serial execution, 1 means serially
but in matlabs parallel environment, etc. Since multistart generates random
initial points several tests were done, and the results were averaged.

3.3.2 GlobalSearch

Being a more sophisticated solver, GlobalSearch has more parameters to ex-
plore. By systematically varying interesting parameters according to Table 2,
the solvers performance could be analyzed. Unlike MultiStart, Globalsearch
doesn’t have built-in parallelization support, but it uses fmincon which can
parallize the computations of the gradients.

3.3.3 Patternsearch

Patternsearch has a large amount of parameters, many with large ranges, mean-
ing a huge parameter space. Two approaches to investigate this space were
developed: one systematic, and one stochastic by a custom-made genetic algo-
rithm. The relevant parameters that were to be investigated are listed in Table 2.

7Mathworks Global Optimization Toolbox Users’s Guide (2013b) - Page 3-64
8http://www.mathworks.se/help/gads/how-globalsearch-and-multistart-work.html

13

http://www.mathworks.se/help/pdf_doc/gads/gads_tb.pdf
http://www.mathworks.se/help/gads/how-globalsearch-and-multistart-work.html

For the systematic approach, parameters thought to have the largest impact on
the performance of patternsearch were varied, while the others were kept con-
stant. For the stochastic approach, a genetic algorithm was developed. It works
by randomizing sets of parameters, running each in patternsearch, comparing
found objective function values, and letting the best ones mate for the next
generation. After running for a number of generations, the fittest parameters
for finding the global optimum consistently should have been found. For a more
detailed explanation, see Algorithm 1.

Result: Sorted list of objective function values along with their
coordinates and parameters for patternsearch

Initialize N individuals, where each individual has a randomized set of
parameters for patternsearch within some bounds. The same initial guess
is used for all individuals;
for For M generations do

for For N individuals do
Execute patternsearch for the current individual;

end
Sort all individuals by lowest objective function value.
Natural selection: select the best individuals, in terms of lowest
feasible objective value. Let them mate, exchanging their parameters
randomly for the individuals in the next generation. Introduce
mutations to preserve genetic diversity.

end

Algorithm 1: Genetic algorithm for patternsearch

4 Results

The objective function values that are presented in Results are scaled values
with physical interpretation that is not discussed in this report. The reader
should only focus on the relative sizes of the numbers.

4.1 Establish a reference solution

The local solver fmincon, run through Multistart with 1 feasible inital point
x0 and 9 random bounded points, converged to 0.37792 for obj. 71 and to
0.60868 for obj. 63, regardless of what algorithm was used. The number of
decimals indicate the accuracy of what all algorithms could achieve. When con-
sidering the mean execution time of the three algorithms, Active-set was the
fastest, then SQP and lastly Tnterior-point, as seen in Fig 2. Since Interior-
point was considerably slower, sometimes up to twice the execution time when
minimizing obj. 63 or obj. 71, and exhibited a higher function value at the
optimum (compared to the 6th decimal); a decision was made to exclude the
algorithm from further analysis.

14

Figure 2: Comparison between fmincon algorithms SQP, Active-set and interior-
point with default settings. One feasible inital point x0 and 9 randomly gener-
ated points ,satisfying bounds, were used in Multistart.

When studying how to set the stopping criteria (controlled by a number of
parameters) for fmincon it was found that the default tolerance settings in
Matlab yielded good results, see Figure 3 and Table 3. All of the tolerances
were varied by an equal amount and the result showed that the value of the
local minimum drastically increased for tolerances of 10−5 and larger; the other
subplots show how the solution behaves when varying one tolerance at a time
while setting the rest to default. The exitflags were positive (1 or 2) for all
tolerances below 10−5. For higher tolerance values the solver would eventually
end with a negative exitflag.

Table 3: Default tolerances for fmincon, with function as stopping criteria.
Constraint tolerance is how strictly the constraints have to be fulfilled, function
tolerance is the difference in objective function evaluations between iterations,
X tolerance is the difference in the coordinates of the point between iterations.

Tolerance Value

Constraint tolerance (TolCon) 10−6

Function tolerance (TolFun) 10−6

X tolerance (TolX) 10−6

15

Figure 3: Tolerance test to analyze the impact of constraint, objective and x
tolerance on the solution

Execution times are stable for tolerances below 10−5 and drop considerably for
values larger than 10−5. Plots are found in appendix section (B).

When searching for a global reference solution, fmincon was configured to use
Active-set and default settings. Active-set had a good execution time and an
ability to find the best local minimum regardless of which objective function
was used. MultiStart ran for 10000 random initial points, uniformly distributed
between the bounds of the input variables, but not necessarily feasible with
respect to the other constraints; see section 3.3.1. Globalsearch ran for 1000
stage 1 points and 5000 trial points, generated by the scatter-search algorithm.
The results are found in Table 4.

Table 4: Found reference solutions for obj 71 and obj 63

Objective function MultiStart GlobalSearch Reference solution

71 0.3779 0.3779 0.3779

63 0.6087 0.6087 0.6087

4.2 Gradient-based global solvers

4.2.1 Multistart

All of the multistart tests used initial guesses from a random uniform distribu-
tion between the bounds of the input variables, but they were not necessarily
feasible with respect to the other constraints; see Section 2.3.2.

The first Multistart test was designed to determine the distribution of con-
verged solutions, given a set of starting points. It is seen in Figure 4 for both

16

objective functions with the SQP and Active-set sub-algorithms, using 10000
initial guesses. It is clear that more than 80 % find the global optimum up to the
4th decimal (exitflag 1), with the exception of Active-set for objective function
63, where the corresponding number is 37 %. However, for the remaining points,
46% converge to the global optimum to within the 3rd decimal. The stopping
criteria could probably be adjusted to bring these up to the 4th decimal as well,
bringing the success rate up to over 80 % in this case as well.

Finally, speedup was tested for both algorithms and sub-algorithms, using 120
initial guesses. The test was repeated 5 times, and the mean execution times
were analyzed. Looking at the results in Figure 5, it is clear that sub-linear
speedup(i.e. speedup that does not scale linearly with the number of workers)
is achieved in all cases, with a maximum speedup of around 10x for 12 workers.
Speedup was also tested for fewer initial guesses; for 24 initial guesses, maxi-
mum speedup was reduced to around 5x for 6 workers.

The mean execution times for one worker with 120 initial guesses are found in
Table 5.A large number of points were used, so the distribution of failed runs
were approximately the same as for the convergence test (around 17 %) for all
five tests. The maximum coefficient of variation (standard deviation of the 5
tests divided by mean) of execution times (for a fixed number of workers) was
around 5 %.

Table 5: MultiStart execution times in seconds for 120 points, one worker, mean
values of five separate runs.

Problem / Algorithm SQP(s) Active-set(s)

71 2350 2100

63 5100 3800

17

Figure 4: Multistart convergence distributions. 10000 initial guesses were used.
In this case, convergence to global minimum was defined to having a correct 4th
decimal when rounded; converging to near the global optimum was defined to
having a correct 3rd decimal when rounded. A very small number of completely
different minima were found; these had objective function values of around 2
times the global optimum, with positive exitflags greater than 1.

Figure 5: MultiStart speedup for 120 points. The values shown are mean values
of 5 separate tests.

18

4.2.2 GlobalSearch

Globalsearch unfortunately terminated erroneously when using mex-files. The
solver always executed fmincon for the initial guess, evaluated a few objective
functions, and then stopped with a message saying that ’the execution was
successful’, ’that fmincon had run once’, and that ’all trial points have been
analyzed’. Since fmincon should be run at least twice in the globalsearch algo-
rithm, something failed. When the mex-files were removed, the solver worked
as expected, but was slow(up to several days for many initial guesses), meaning
that the time constraints of the project would reduce the number of parameters
that could be tested. It was decided to focus on the evaluation of the accuracy
and speedup of Globalsearch; fine-tuning to see if execution times could be re-
duced was given a low priority.

The solver always found the global optimum for all our test and was therefore
deemed as an accurate solver. Speedup was tested for a small number of points
(50 stage 1 points and 150 trial points); the resulting mean values for 5 separate
tests can be seen in Figure 6. Execution times are shown in Table 6. The
maximum coefficient of variation (standard deviation of the 5 tests divided by
mean) of execution times (for a fixed number of workers) was around 10 %.

Table 6: Globalsearch execution times in seconds for 120 points, 1 worker, mean
values of 5 separate runs.

Problem / Algorithm SQP(s) Active-set(s)

71 1650 1250

63 5200 4050

Figure 6: Speedup for globalsearch. For each number of workers, 50 stage 1
points and 150 trial points were used in globalsearch. This was done 5 times
and the mean values are shown. The maximum coefficient of variation was
around 10 %.

19

4.3 Patternsearch

4.3.1 Systematic approach

For the systematic approach, the default parameters for patternsearch were
used, parameters were varied one by one to see how the solution varied. Figure
7 illustrates a common result when running patternsearch for obj. 71 with
default settings and a feasible initial guess. It serves as a good example when
explaining parameter selection.

Figure 7: A common result for patternsearch when run on obj. 71

Mesh tolerance (TolMesh)
Mesh tolerance is the parameter that causes patternsearch to stop, fulfilling the
stopping criteria, i.e. the sub-problems continually are solved until the mesh
size is below the tolerance value. In Figure 7 the number of iterations can easily
be extended by increasing TolMesh. Execution time was roughly 700s; decreas-
ing the TolMesh to 10−20 resulted in 5 iterations and close to no improvement
in the function value, 0.529046.

Bind tolerance (TolBind)
Bind tolerance determines if the search direction must include the constraint
boundaries. If the distance from the current point is less than TolBind the
constraint becomes active. Mathwork recommends setting TolBind equal to or
larger than the maximum tolerance of ’TolMesh’, ’TolX’ and ’TolFun’.9 Thus
the value was varied between 10−6 to 10−1. No improvement of either the func-
tion value or execution time was found.

Several additional parameters were tested but the global minimum was never
found. All in all, the systematic approach yielded the following best feasible
objective function values:

• Obj 71: best value: 0.5290 exitflag: 1

• Obj 63: best value: 0.6789 exitflag: -2

These are about 57 % and 12 % higher, respectively, than the global reference
solutions.

9http://www.mathworks.se/products/global-optimization/examples.html?file=

/products/demos/shipping/globaloptim/psoptionsdemo.html

20

http://www.mathworks.se/products/global-optimization/examples.html?file=/products/demos/shipping/globaloptim/psoptionsdemo.html
http://www.mathworks.se/products/global-optimization/examples.html?file=/products/demos/shipping/globaloptim/psoptionsdemo.html

4.3.2 Genetic Algorithm

The genetic algorithm was tested with patternsearch on both objective func-
tions 63 and 71. It was implemented with 8 generations of 30 individuals each.
The mean objective function value for each generation is shown in figures 8 and
9. Unfortunately, the mex-files sometime aborted the solver because of a do-
main error in the ADM. These individuals were excluded from the results. The
best objective function values found were 0.6364 and 0.4867, respectively. This
should be compared to the global minima of 0.6087 and 0.3779. Of the solvers
that did not abort because of the mex error, the exit flags were around 70% 0’s
(meaning the maximum number of function evaluation or time limit had been
reached) and 30% 1’s (meaning the mesh and constraints tolerances had been
fulfilled).

The parameters that had generated the lowest objective function values were
then tested with patternsearch for execution time and speedup. The means of
five runs were analyzed. The execution times for one worker were around 1580
seconds for 63, and 610 seconds for 71. The maximum standard deviation of
execution times were around 2 %. However, execution time was one of the active
stopping criteria. The speedup is shown in figure 10; a maximum speedup of 3
was achieved for 9 workers.

Figure 8: The performance of the genetic algorithm for objective function 63.
Each generation consisted of 30 individuals; shown are the mean final objective
function value for each generation. The best individual found had an objective
function value of 0.6430.

21

Figure 9: The performance of the genetic algorithm for objective function 71.
Each generation consisted of 30 individuals; shown are the mean final objective
function value for each generation The best individual found had an objective
function value of 0.4867

Figure 10: Speedup for both objective functions. The values shown are mean
values of five tests. Both peaked at around 3 speedup for 9 workers.

4.3.3 Supplementary tests

To find out why patternsearch failed to find the global optimum, some supple-
mentary tests were carried out.

When Patternsearch narrows in on a certain value it tends to get stuck, unable
to improve further. We tested the hypothesis that if the initial guess is close to
the global minimum, it should be easier for the algorithm to find it. The result
shows that the solver does not progress to the global optimum of 0.3779; see

22

figure 11.

Figure 11: Patternsearch with an initial guess close to the global optimum for
objective function 71.

There is a relaxation parameter that determines how strict the equality con-
straint are in the ADM; these constraints represent mass flow continuity in the
ADM. By increasing this relaxation parameter (default value 0%), the equality
constraints are transformed into inequality constraints, meaning an enlarged
feasible region, which should make it easier for patternsearch to find the global
optimum. Multistart was also tested to determine a correct new global mini-
mum, since increasing the feasible region will most likely result in a new global
minimum. The results are shown in table 7.

Table 7: Results from changing relaxation, objective function 71

Relaxation Patternsearch Multistart Difference (relative)

5% 0.9379 0.3137 0.6242 (2.99)

25% 0.3823 0.2014 0.1809 (1.90)

50% 0.2642 0.1321 0.1321 (2.00)

5 Discussion

5.1 MultiStart

MultiStart performs well in the tests. The solver generates points within bounds
and uses them as starting guess regardless of if they are feasible or infeasible,
finding the global optimum in more than 80 % of the cases; the exception is
Active-set for objective function 63; however, the stopping criteria could prob-
ably be adjusted. This would bring up the percentage that finds the global
optimum within the 4th decimal to 80 % as well. An 80 % success rate with
10000 initial points indicates a very accurate method.

23

Execution time for 120 starting points was around 2100-2400 seconds, depend-
ing on the algorithm and objective function 71. This yields an average execution
time per point of around 20 seconds.

The speedup is almost linear, reaching a maximum of 10 for 12 workers. How-
ever, for a lower amount of points, the speedup is reduced; for 24 starting points,
the maximum speedup found was around 5. This happens because the amount
of work per worker is not sufficient, causing the overhead due to the workers to
be larger than the gained speedup. This illustrates the importance of assigning
enough work when running in parallel.

There was a case when the subsolver fmincon found different optimum depend-
ing on what algorithm that was used. Appendix A contains figure 13 that
illustrates an offset of 0.02 in the y-axis between the two algorithms Active-set
and SQP. This is likely due to the feasible initial point x0, which converges
slighlty different for the two algorithms. If Mulitstart for 10 starting points is
run there is no difference in the global optimum for the two algorithms.

5.2 GlobalSearch

Globalsearch appears to be very accurate. The tests always found the global
optimum. Furthermore, since it relies on fmincon just like Multistart, it should
have similar convergence properties, meaning that it probably would suffice to
test a very small number of points, as discussed under the Multistart subhead-
ing. The execution times are unfortunately very large. However, since mex-files
had to be turned off, these results should be treated with care when compared
with the other methods, that naturally are much faster.

The speedup was found to be a maximum of 5x for 12 workers; this is higher than
predicted. Considering that it lacks native parallelization support, the speedup
of Globalsearch should not be better than that of fmincon. Running fmincon for
up to 12 workers resulted in a speedup of 2x. The explanation has to do with the
mex-files. GlobalSearch was configured to run without mex-files and hence was
more computationally heavy compared to fmincon with mex-files. The speedup
measure favours non-optimized code which means that globalsearch will have
a larger parallel section, hence more work/worker than fmincon for the same
problem.

GlobalSearch did not work with mex-files. When GlobalSearch fails it always
executes fmincon once for the initial guess, evaluates a few objective functions,
and then stops with a message saying that the execution was successful and that
all trial points had been analyzed. This is strange since GlobalSearch will always
run fmincon at least twice, once for the initial x0 and one more for the stage 1
points. It is possible that the mex-files somehow interfere with the generation
of trial points(scattering), preventing any trial points from being created.

24

5.2.1 Mex files

Mex-files should be used since they reduce the execution time significantly, but
they also exhibit some difference compared to the original matlab code. For
instance when running fmincon with and without mex-files the found solution
is the same but the number of iterations sometimes differ. There is also a ten-
dency of errors occurring, concerning domain errors and complex values, with
mex-files. A recommendation is to perform a thorough debugging of the mex-
files, while running Globalsearch, to help clarify the odd behaviour.

5.3 Patternsearch

5.3.1 Convergence problem

For both the systematic and stochastic approach no parameter values were found
that made patternsearch converge to the global minimum. The results where
feasible points with objective function values of around 4 % for obj. 71 and 28
% for obj. 63 when compared to the global reference solution.

Patternsearch did manage to find better results with the genetic algorithm. The
solution for both obj 63 and obj 71 were found by a combination of poll method
and search method. In both cases one of the methods were of type MAD-
positiveBasis which gives a certain randomness to the generated pattern. The
random search direction could, in some cases, manage to find a small feasible
’path’ towards a better solution.

The equality constraints Gi of the optimization problem are clearly the reason
to why patternsearch struggles to find the global optimimum. From Figure 7
one can see that the penalty is increased for every subproblem. This is due to
candidate points being close to one of the many constraints. Repeatedly in-
creasing the penalty will eventually confine the movement of patternsearch to
the point when only small steps are possible, hence the minor improvements for
iteration 3-4 in 7. Systematic tests were done, varying the initial penalty and
penalty factor parameters, which affected the execution times, but no improve-
ment of the global solution could be seen. Fine tuning these parameters could
however lead to patternsearch finding the global optimum.

A test where the relaxation parameters were increased was done in order to en-
large the feasible region and make it easier for Patternsearch to find the global
minimum. The results in Table 7 hints about this being the case. The difference
between the true global solution found by MulitStart and the solution found by
Patternsearch decreases when the equality constraints are relaxed. This could
indicate that Patternsearch can find a path to the global minimum easier.

Previous results [1], based on a similar model, done outside the frame of this
project, indicate that Patternsearch performs well when other global solvers
struggle. An important difference between the two models are that ADM has
equality constraints and the other model hasn’t.

25

Patternsearch is still interesting to use with the ADM. The solver could be
combined with e.g. Multistart creating a hybrid solver that might result in
better performance (high accuracy and acceptable speedup). More specifically
Patternsearch could be used to supply Multistart with a better initial point by
searching for an optimum with the equality constraints turned off; this should
be no problem for patternsearch. Then the obtained optimizer x∗(feasible w.r.t.
the inequality constraints) is supplied as an intial point to Multistart with the
equality constraints turned on. This could make the subsolver fmincon converge
to a minimum faster than with the regular approach, because the initial point
might be close to the optimum.

To summarize, Patternsearch never converges to the global minimum, meaning
that accuracy can not be measured for the solver. The convergence problem
and slow execution time is most likely caused by the strict equality constraints.
This makes it difficult for the solver, without the aid of gradients, to find its way
to the global optimum. In order to improve the solver, the genetic algorithm
can be further refined in e.g. how inheritance works by finding parameters that
converge, or that a careful analysis of the penalty parameters could give better
convergence. Lastly, a hybrid solver would be interesting to implement and an-
alyze.

5.3.2 Speedup

Patternsearch exhibited execution times in the same order of magnitude as the
other solvers, but these results are essentially meaningless since execution time
was used as an active stopping criteria. The speedup for Patternsearch is more
interesting; a maximum of around 3 was achieved for 9 workers. The reason for
this poor speedup is the large serial part of Patternsearch; only the computations
of the objective functions of the candidate points can be parallelized.

6 Conclusions

6.1 Current state

Our main findings are presented in Table 8. Multistart and Globalsearch are
both very accurate, but only Multistart has reasonable execution time. It is
important to note that execution time is the least interesting result, since Glob-
alsearch did not work with mex-files and patternsearch did not converge. They
cannot be compared in any meaningful way, but it has been shown that Multi-
start is reasonably accurate and fast when running 10 starting points. In terms
of speedup Multistart is by far the best, this is visualized in Figure 12.

Based on these results Multistart is the best solver in terms of performance and
speedup when used with the ADM. It is a good candidate for implementing
with the ADM on a cloud architecture, running global optimization efficiently
and accurately on the internet.

26

Table 8: A summary of the performance of each solver.
Solver Best value found Accuracy Max Speedup

Multistart Global optimum 80 % 10x

Globalsearch Global optimum 100 % 5x

Patternsearch 4 % (obj. 63) and 28 % (obj.71) 0 % 3x

higher than global optimum

Figure 12: Speedup curves of the three solvers for problem 71

6.2 Directions for future work

It is recommended to further investigate Patternsearch in order to improve its
performance, especially investigating the penalty parameters. It is also sug-
gested that a proper optimization of the matlab code is performed. It is possible
to reduce the computational complexity of the code and thereby remove the need
of mex-files, solving the problems regarding Globalsearch. Finally, analysing the
hybrid solver could give a new approach to generating better starting points for
e.g. Multistart.

27

7 Acknowledgement

We would like to thank our supervisors Kateryna Mishchenko and Anders Dan-
eryd for introducing us to the project and for their support. We also like to
thank Maya Neytcheva for administrating the project course that this project
was a part of.

A Appendix

Figure 13: Tolerance test to see how constraint, objective and x tolerance affect
the solution

28

B Appendix

Figure 14: How execution time depends on choice of tolerance

References

[1] Joakim Agnarsson, Mikael Sunde, Inna Ermilova, Parallel Optimization In
Matlab; 2012; . Department of information Technology Uppsala university

29

	Introduction
	Goal
	The ADM - Hot rolling

	Theory
	Optimization
	Optimization methods
	Gradient based methods
	Direct Search methods
	Challenges

	Optimization methods in Matlab
	Local optimization solver - fmincon
	Global optimization solvers - MultiStart, GlobalSearch and Patternsearch

	Method
	Matlab framework
	Testing environment
	The Run framework
	Solver exitflags

	Establish a reference solution
	The solvers
	MultiStart
	GlobalSearch
	Patternsearch

	Results
	Establish a reference solution
	Gradient-based global solvers
	Multistart
	GlobalSearch

	Patternsearch
	Systematic approach
	Genetic Algorithm
	Supplementary tests

	Discussion
	MultiStart
	GlobalSearch
	Mex files

	Patternsearch
	Convergence problem
	Speedup

	Conclusions
	Current state
	Directions for future work

	Acknowledgement
	Appendix
	Appendix

