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Abstract

Hot rolling is a metal forming process that is used in shaping certain
large pieces of metal such as slabs, blooms, and billets to produce sheet
metal. These metal slabs are usually heated up to 325−450◦C depending
on the type of the metal. They passed through specific rolling mills ac-
cordingly to the desired products and finally, they are hardened while the
temperature decrease below the recrystallization temperature. The entire
manufacturing process and the optimal production settings are desired.
In order to investigate how to reduce the cost, a mathematical model for
the process has been implemented in MATLAB at the company ABB.
The model solves a large-scale nonlinear optimization problem and it is
used as a black box. Sensitivity analysis is needed in the model to change
certain physical model parameters that optimize the production process,
which is the main purpose of this paper. Modifications of these specific
physical parameters of the model in process allow to understand their im-
pact on the cost. The sensitivity study is performed using fmincon and
MultiStart solvers in MATLAB and certain results are obtained for dif-
ferent algorithms in fmincon and objective functions.

Keywords: optimization, MATLAB, sensitivity analysis, Lagrange mul-
tipliers
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List of notations used in the paper

� obj63 : Objective function describing specific power

� obj71 : Objective function describing grain size

� obj63AS0 : Objective function for specific power solved with the local al-
gorithm active-set and nonlinear equality constraints are NOT substituted
by the pair of nonlinear inequality constraints

� obj63AS1 : Objective function for specific power solved with the local
algorithm active-set and nonlinear equality constraints are substituted by
the pair of nonlinear inequality constraints

� obj63SQP0 : Objective function for specific power solved with the local
algorithm sqp and nonlinear equality constraints are NOT substituted by
the pair of nonlinear inequality constraints

� obj63SQP1 : Objective function for specific power solved with the local
algorithm sqp and nonlinear equality constraints are substituted by the
pair of nonlinear inequality constraints

� obj71AS0 : Objective function for grain size solved with the local algorithm
active-set and nonlinear equality constraints are NOT substituted by the
pair of nonlinear inequality constraints

� obj71AS1 : Objective function for grain size solved with the local algorithm
active-set and nonlinear equality constraints are substituted by the pair
of nonlinear inequality constraints

� obj71SQP0 : Objective function for grain size solved with the local algo-
rithm sqp and nonlinear equality constraints are NOT substituted by the
pair of nonlinear inequality constraints

� obj71SQP1 : Objective function for grain size solved with the local algo-
rithm sqp and nonlinear equality constraints are substituted by the pair
of nonlinear inequality constraints



1 Introduction

1.1 Hot Rolling

Hot rolling is a process that creates individual parts, assemblies, or large-scale
structures by moving metal slabs heated up to a very high temperature through
several specific rolling mills. As Figure 1 shows, the process works in the fol-
lowing order. First, metal slabs are heated up in furnaces. Second, the metal
slabs pass through several mills, which are roughing mills and finishing mills,
respectively. These mills give a particular shape to the metal slabs by arranging
the speed and the gap of the rolls. Third, the metal sheets are cooled at run-out
table.

Figure 1: Hot Rolling Process

Since the process is expensive, a mathematical optimization model is imple-
mented to simulate the hot rolling process prior to real production. The simu-
lation model is implemented by the company ABB and provided as a black box.
The aim of the research is to investigate the quality of the so-obtained optimal
solutions using sensitivity analysis.

1.2 Optimization Model

The model is a constrained nonlinear optimization problem, described as

minimize
X

F (X)

subject to gi(X) ≤ 0, i = 1, . . . , 130

hj(X) = 0, j = 1, . . . , 10

lb ≤ X ≤ ub

(1.1)

where X is the vector of 33 optimization variables such as material speed, inter-
pass tensions, roll gaps, roll speeds, and furnace temperature. F(X) is a nonlin-
ear, non-smooth and non-convex objective function, gi(X) is a set of nonlinear
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inequality constraints, hj(X) is a set of nonlinear equality constraints, lb and
ub are lower and upper bounds for the variables, respectively.

1.3 Theory

In order to find a local solution for the problem, the so-called first-order neces-
sary conditions have to be satisfied. First, the Lagrangian function is defined
as

L(X;λ, µ) = F (X) +

130∑
i=1

λigi(X) +

10∑
j=1

µjhj(X), (1.2)

where λ is the vector of Lagrange multipliers for the nonlinear inequality con-
straints and µ is the vector of Lagrange multipliers for the nonlinear equality
constraints.
Let X∗ be a local solution for the problem with the vectors of Lagrange multi-
pliers λ∗ and µ∗ at the minimum point. The necessary conditions are

∇XL(X∗;λ∗, µ∗) = 0, (1.3a)

gi(X
∗) ≤ 0, for i = 1, . . . , 130 (1.3b)

hj(X
∗) = 0, for j = 1, . . . , 10 (1.3c)

λ∗i ≥ 0, for i = 1, . . . , 130 (1.3d)

λ∗i gi(X
∗) = 0, for i = 1, . . . , 130 (1.3e)

where the conditions ( 1.3e) are complementarity conditions that imply which
nonlinear inequality constraint is active. The minimum point is acquired by
satisfying the conditions ( 1.3), which are also known as KKT conditions[1, 2].

2 Methods

2.1 MATLAB

In MATLAB, there are several different approaches to solve the optimization
problem; however the fmincon solver is used as a main tool. Moreover, the
MultiStart solver is used to solve the same problem with many different initial
points.

2.1.1 fmincon

The fmincon solver is one of the tools that solves local nonlinear constrained
optimization problems. The solver requires an objective function, bound limits
on variables, constraints and an initial point accordingly to model (1.1) 1. This
solver has different algorithms and each of them is a way to solve the prob-
lem2. The algorithms sqp and active-set are used in this paper. The results are
returned by the solver at the end of the calculations.

1More information about fmincon: http://www.mathworks.se/help/optim/ug/fmincon.html
2More information about the algorithms: http://www.mathworks.se/help/optim/ug/constrained-

nonlinear-optimization-algorithms.html
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2.1.2 MultiStart

The MultiStart solver is the method to solve an optimization problem starting
with many different initial points. Since the optimization problem is non-convex,
it could have several local solutions. Different local solutions could be found by
the optimization routine, starting from different initial points and obtaining dif-
ferent local solutions for different initial points. The optimal objective function
value and solution vector are given as ranked lists of the best found objective
function values and correspondent optimal points. The chosen problem for the
solver is model (1.1) and parallelization is also available to reduce the execution
time3.

2.2 Feasible Set

A set of initial points is generated by using the MultiStart solver in order to
separate the infeasible initial points leading to a feasible solution from the ones
not leading to a feasible solution. Since the model is very strict in constraints,
the next step is to find the initial points that give a feasible solution after
running the fmincon solver. It works as follows. First, the random initial
points are generated by MultiStart by satisfying only the lower and upper bound
constraints. These initial points do not satisfy many of the nonlinear inequality
constraints and especially the nonlinear equality constraints. Second, these
initial points are triggered in fmincon solver and finally, if they lead to a feasible
solution, they are saved and used in the future analysis. An example is given
in Figure 2 (Warning : The real problem is thirty three dimensional which is
impossible to picture. All the figures in the section Methods are plotted in two
dimensions.)

2.3 Lagrange Multipliers and Active Set

The solution of the optimization problem is terminated when it reaches a min-
imum value subject to the given constraints. If the solution belongs to the
boundary of some constraint, such constraints are called active and the im-
pact of these active constraints on the solution could be found by acquiring the
Lagrange multiplier associated with these constraints. The larger Lagrange mul-
tiplier is, the more impact it has on the solution. Since the solution is optimal,
the Lagrange multipliers associated with inequality constraints have nonnega-
tive values. The combination of all active constraints is called an active set.
Note that the Lagrange multipliers can be acquired for inequality constraints,
because the equality constraints are always active by the definition and their
constraint value cannot change[1, 2]. An example is given in Figure 3.

2.4 Constraints Modifications

To understand how sensitive is the optimal solution with respect to the small
change in the right-hand side of the active constraints, the constraints are per-
turbed and the new so-obtained optimization problem is solved. The inequality
constraints and equality constraints are modified in different ways.

3More information about MultiStart :http://www.mathworks.se/help/gads/multistartclass.html
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(a) The initial points generated by
MultiStart before running fmincon

(b) The feasible solutions, which have
the same solution, generated after run-
ning fmincon

Figure 2: An example of extracting the initial points that lead to a feasible
solution from the infeasible initial points. The green curves are upper and lower
bound constraints, the red curves are nonlinear inequality constraints (referring
to one of the two areas separated by the curve in the plane), the blue curve is
nonlinear equality constraint, and the black points are initial points. Note that
all 16 black points in (a) are infeasible due to their positions, i.e. they are not on
the equality constraint and some of them are not feasible due to the inequality
constraints. However 14 of them lead to a feasible solution , in which there is
a single optimum, by using the fmincon solver in (b), which are reserved for
future analysis, and two of them fail to lead to a feasible solution, which are
eliminated.

Figure 3: An example of the active set. The red curves are active whereas the
black curves are inactive. All of these curves can be any kind of constraints
except equality constraints as long as the points are are feasible with respect
to the lower and upper bound constraints. One of the initial point (the empty
point) that leads to a feasible solution generated by the MultiStart is obtained
by fmincon at the constraints (the filled point). In this case, these red curves
are the limiters of the problem and they give a positive Lagrange multiplier,
whereas the inactive curves give zero Lagrange multiplier.
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2.4.1 Perturbation of the Inequality Constraints

When the active set is determined, the active constraints are separated into
groups: active lower bound constraints, active upper bound constraints, and
active nonlinear inequality constraints. The largest Lagrange multiplier in the
active set is chosen to perturb its constraint, because the largest Lagrange mul-
tiplier has the largest impact on the solution.
If the largest Lagrange multiplier is associated with one of the active lower
bound constraints, the constraint is changed to a smaller value by subtracting
0.01 from the constraint value as in ( 2.1) in order to extend the feasible region.

lb ≤ X ⇒ lb− 0.01 ≤ X (2.1)

If the largest Lagrange multiplier is associated with one of the active upper
bound constraints, the constraint is changed to a larger value by adding 0.01 to
the constraint value as in ( 2.2) in order to extend the feasible region.

X ≤ ub⇒ X ≤ ub+ 0.01 (2.2)

If the largest Lagrange multiplier is associated with one of the active nonlinear
inequality constraints and if it is a minimum constraint, then it is subtracted by
0.01 (see ( 2.3)), or if it is a maximum constraint, then it is added by 0.01 (see
( 2.4)) and or if the constraint is neither, then the constraint is not modified as
it represents a nonnegative condition.

gi(X) ≤ 0⇒ gi(X) + 0.01 ≤ 0 (2.3)

gi(X) ≤ 0⇒ gi(X)− 0.01 ≤ 0 (2.4)

The MATLAB file for the nonlinear inequality constraints was provided by ABB
and the modification of it can be found in Appendix A.
When the feasible set is extended by altering the active constraint, the optimiza-
tion problem is solved by the fmincon solver again starting from the previous
local solution. The decrease of the optimal objective function due to the modi-
fication is analyzed and the whole process is repeated until there is no decrease
in the optimal objective function. An example is given in Figure 4.

2.4.2 Modification of the Equality Constraints

In addition to the nonlinear inequality constraints, the impact of the nonlinear
equality constraints on the optimal objective function is analyzed by converting
them into a pair of inequality constraints. The substitution of a pair of inequality
constraints into the equality constraint is done by following ( 2.5)

hj(X) = 0⇒ −0.05 ≤ hj(X) ≤ 0.05 (2.5)

An example is given in Figure 5.
Moreover, the sensitivity analysis for these new nonlinear inequality constraints
is done by following the perturbation procedure in the previous section. The
only difference is that the sensitivity analysis is done on the boundaries of the
area instead of on the curve.
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Figure 4: An example of the modification of an inequality constraint for sensi-
tivity analysis. The black curves are inactive whereas both the red curve and the
purple curve are active, however the red one has the largest Lagrange multiplier.
All of these curves can be any kind of constraints except equality constraints as
long as the points are are feasible with respect to the lower and upper bound
constraints. Assume that the initial point is led to a feasible solution, which
is at the black point. Since it has two active constraints at the local solution,
the one which has the largest Lagrange multiplier, which is red in this case, is
chosen and given some value (i.e. adding or subtraction) so that the feasible
set is extended. When the new feasible region is acquired, the optimization
problem is run again starting from where the black point is and the new po-
sition is most likely to be the filled green dot because of the active constraint
associated with the largest Lagrange multiplier not decreasing much, whereas
it could also be one of these green empty dots. The objective function at that
point is checked and if it has a smaller value than the previous one and there are
active constraints again, the process is repeated until there is no more decrease
in the optimal objective function.

Figure 5: An example of an equality constraint becoming a pair of inequality
constraints. The green curves are upper and lower bound constraints, the red
curves are nonlinear inequality constraints (referring to one of the two areas
separated by the curve in the plane). The blue curve in the middle becomes an
area by being converted into two inequality constraints in the both directions.
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2.5 Other Model and Method Parameters

We are given two different objective functions, which are called obj63 and obj71.
The obj63 is the problem of minimization of the specific power (the power di-
vided by the production speed) and the obj71 is for the problem of minimization
of the grain size.

The MultiStart solver starts with 50 different initial points in attempt to
generate the set of the initial points that lead to a feasible solution. After run-
ning fmincon, the initial points that lead to a feasible solution are kept and and
used further.

Furthermore, there are certain tolerances in the numerical optimization for
the fmincon solver, which are 10−6 for first-order optimality condition satisfac-
tion and 10−12 for the constraint violation. These also depend on the algorithm
used in the solver.

Note that the Lagrange multipliers can be acquired by using the fmincon
solver alone, i.e. the MultiStart solver does not provide the Lagrange multipli-
ers.

The MATLAB files are mexed in order to reduce the execution time. The
model is tested on computers with Solaris x86 64 and the version for MATLAB
is 2012b (or Version 8.0).

3 Results

3.1 Sensitivity Analysis for obj71

obj71 is an objective function describing grain size occurred in the model. It
minimizes the grain size subject to the given constraints. It is tested with two
different local algorithms in fmincon solver.

3.1.1 Active-Set

The optimization problem has 33 upper bound constraints, 33 lower bound
constraints, 130 nonlinear inequality constraints, and 10 nonlinear equality con-
straints. The problem is solved using the local algorithm active-set in the fmin-
con solver. The MultiStart solver starts with 50 different initial points satisfying
upper and lower bound constraints but not satisfying many nonlinear inequality
constraints and especially the nonlinear equality constraints. Table 1 shows the
values of the variable vector for the local solution.
Table 2 shows that 37 initial points from 50 initial points lead to a feasible so-
lution. There are two nonlinear inequality constraints, which are 108 and 110,
not satisfying the negative conditions,i.e. g108(X) > 0 and g110(X) > 0.
The sensitivity analysis is performed by finding the largest Lagrange multipliers
in the active set and modifying the corresponding constraint. Figure 6 and 7
complement each other to show which constraint has the largest Lagrange mul-
tiplier. Step in the figures shows how many times the constraint associated with
the largest Lagrange multiplier is modified and found a new optimal solution.
Figure 6 illustrates which active set group, such as upper bound constraints
(U ), lower bound constraints (L) and nonlinear inequality constraints (NLI ),
and constraint has the largest Lagrange multiplier with its value at each step
and thus the modified constraint. Figure 7 shows the impact of the modification
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Table 1: Variables at the local solution for obj71AS0

X1 0.9764 X12 9.1413e-23 X23 0.96291
X2 7.3656e-23 X13 1.3073 X24 0.98263
X3 1.53 X14 1.5351 X25 0.99501
X4 1.53 X15 1.0236 X26 1.0088
X5 1.53 X16 1.1429 X27 0.99578
X6 1.53 X17 1.0769 X28 1.0115
X7 1.53 X18 0.91649 X29 1.0086
X8 1.53 X19 1.0008 X30 1.0118
X9 1.53 X20 1.0178 X31 1.0057
X10 1.53 X21 1.0001 X32 0.9907
X11 -0.16438 X22 0.95 X33 0.8978

Table 2: Information on the feasible set and the optimal point for obj71AS0

Number of local solutions acquired 37
Number of distinct local solutions 1
Optimal Objective Function 0.37792
Exitflag 1
Number of Iterations 26
First Order Optimality 3.6999e-14
Constraint Violation 2.327e-13
Non-satisfied Constraints 108, 110
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of the constraint on the optimal objective function. The new minimum objec-
tive function value is 0.3621, decreased from 0.3779. Since there is a decrease
in the objective function value, a better solution has been found.

Figure 6: Procedure in obj71AS0. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.

Figure 7: Sensitivity Analysis in obj71AS0

Since the nonlinear equality constraints are active by definition, they are con-
verted into a pair of nonlinear inequality constraints. The optimization has now
150 nonlinear inequality constraints with the same upper and lower bound con-
straints. The problem is solved by the local algorithm active-set in the fmincon
solver again. Table 3 gives the values for the local solution before doing the
sensitivity analysis.
Table 4 shows that 38 initial points from 50 initial points lead to a feasible
solution generated by fmincon solver. There are three nonlinear inequality con-
straints, which are 53, 108 and 110, not satisfying the negative conditions,i.e.

9



Table 3: Variables at the local solution for obj71AS1

X1 0.9764 X12 0 X23 0.91391
X2 0 X13 1.2977 X24 0.93319
X3 1.53 X14 1.5191 X25 0.94558
X4 1.53 X15 1.0186 X26 0.95912
X5 1.53 X16 1.1377 X27 0.94663
X6 1.53 X17 1.0755 X28 0.96151
X7 1.53 X18 0.91317 X29 0.95846
X8 1.53 X19 0.99741 X30 0.96175
X9 1.53 X20 1.0119 X31 0.95512
X10 1.53 X21 1.0144 X32 0.94191
X11 0.28466 X22 0.95 X33 0.87828

Table 4: Information on the feasible set and the optimal point for obj71AS1

Number of local solutions acquired 38
Number of distinct local solutions 1
Optimal Objective Function 0.31373
Exitflag 1
Number of Iterations 28
First Order Optimality 5.79e-14
Constraint Violation 2.2027e-13
Non-satisfied Constraints 53, 108, 110
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g53(X) > 0, g108(X) > 0 and g110(X) > 0. The decrease in the optimal ob-
jective function by the conversion is 0.06419, which also means that the change
in the constraints causes around 16.98% decrease in the optimal value of the
objective function.
The sensitivity analysis is applied by finding the largest Lagrange multipliers in
the active set and modifying the corresponding constraint. Figure 8 illustrates
which active set group and constraint has the largest Lagrange multiplier with
its value at each step and thus the modified constraint. Figure 9 shows the
impact of the modification of the constraint on the optimal objective function.
The new minimum objective function value is 0.3002, decreased from 0.3137.

Figure 8: Procedure in obj71AS1. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.

Figure 9: Sensitivity Analysis in obj71AS1
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3.1.2 SQP

The whole process in the previous section is repeated with the local algorithm
sqp. Table 5 gives the values for the local solution.

Table 5: Variables at the local solution for obj71SQP0

X1 0.9764 X12 0 X23 0.96291
X2 0 X13 1.3073 X24 0.98263
X3 1.53 X14 1.5351 X25 0.99501
X4 1.53 X15 1.0236 X26 1.0088
X5 1.53 X16 1.1429 X27 0.99578
X6 1.53 X17 1.0769 X28 1.0115
X7 1.53 X18 0.91649 X29 1.0086
X8 1.53 X19 1.0008 X30 1.0118
X9 1.53 X20 1.0178 X31 1.0057
X10 1.53 X21 1.0001 X32 0.9907
X11 -0.16438 X22 0.95 X33 0.8978

Table 6: Information on the feasible set and the optimal point for obj71SQP0

Number of local solutions acquired 36
Number of distinct local solutions 1
Optimal Objective Function 0.37792
Exitflag 1
Number of Iterations 31
First Order Optimality 1.6155e-06
Constraint Violation 2.0672e-13
Non-satisfied Constraints 56, 108, 110

Table 6 shows that 36 initial points from 50 initial points lead to a feasible
solution. There are three nonlinear inequality constraints, which are 56, 108
and 110, not satisfying the negative conditions,i.e. g56(X) > 0, g108(X) > 0
and g110(X) > 0. The sensitivity analysis is performed. The new minimum
objective function value is 0.3621, decreased from 0.3779.
The nonlinear equality constraints are converted and Table 7 gives the values
for the local solution.
Table 8 shows that 39 initial points from 50 initial points lead to a feasible
solution. There are five nonlinear inequality constraints, which are 53, 54, 56,
108 and 110, not satisfying the negative conditions,i.e. g53(X) > 0, g54(X) > 0,
g56(X) > 0, g108(X) > 0 and g110(X) > 0. The decrease in the optimal ob-
jective function by the conversion is 0.06419, which also means that the change
in the constraints causes around 16.98% decrease in the optimal value of the
objective function.
The sensitivity analysis is applied. The new minimum objective function value
is 0.3002, decreased from 0.3137.
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Figure 10: Procedure in obj71SQP0. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.

Figure 11: Sensitivity Analysis in obj71SQP0
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Table 7: Variables at the local solution for obj71SQP1

X1 0.9764 X12 0 X23 0.91391
X2 0 X13 1.2977 X24 0.93319
X3 1.53 X14 1.5191 X25 0.94558
X4 1.53 X15 1.0186 X26 0.95912
X5 1.53 X16 1.1377 X27 0.94663
X6 1.53 X17 1.0755 X28 0.96151
X7 1.53 X18 0.91317 X29 0.95846
X8 1.53 X19 0.99741 X30 0.96175
X9 1.53 X20 1.0119 X31 0.95512
X10 1.53 X21 1.0144 X32 0.94191
X11 0.28466 X22 0.95 X33 0.87828

Table 8: Information on the feasible set and the optimal point for obj71SQP1

Number of local solutions acquired 39
Number of distinct local solutions 1
Optimal Objective Function 0.31373
Exitflag 1
Number of Iterations 29
First Order Optimality 8.0602e-07
Constraint Violation 2.3093e-14
Non-satisfied Constraints 53, 54, 56, 108, 110

Figure 12: Procedure in obj71SQP1. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.
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Figure 13: Sensitivity Analysis in obj71SQP1

3.2 Sensitivity Analysis for obj63

obj63 is an objective function describing specific power in the model. This
objective is minimized subject to the given constraints. It is tested with two
different local algorithms in fmincon solver.

3.2.1 Active-Set

The whole process is again repeated with the objective function obj63 and the
local algorithm active-set. Table 9 gives the values for the optimal point in the
feasible set.

Table 9: Variables at the optimal point in feasible set for obj63AS0

X1 1.1971 X12 1.7115e-25 X23 1.1976
X2 1.3834e-22 X13 0.91201 X24 1.2466
X3 1.53 X14 1.2212 X25 1.2738
X4 1.53 X15 1.0391 X26 1.274
X5 1.53 X16 0.48745 X27 1.3414
X6 1.53 X17 0.6911 X28 1.3746
X7 1.53 X18 0.2 X29 1.4904
X8 1.53 X19 0.83048 X30 1.4188
X9 1.53 X20 0.81881 X31 1.362
X10 1.53 X21 1.2321 X32 1.2603
X11 -0.51001 X22 0.95 X33 1.1429

Table 10 shows that 42 initial points from 50 initial points lead to a feasible
solution. However, they give 27 distinct local solutions. Since the values of the
objective functions and the variables of these local solutions have similar values
to each other, they all are regarded as one single point4, in which the optimal

4To see the difference between different local solutions, please see Appendix B
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Table 10: Information on the feasible set and the optimal point for obj63AS0

Number of local solutions acquired 42
Number of distinct local solutions 27
Optimal Objective Function 0.60868
Exitflag 1
Number of Iterations 68
First Order Optimality 3.4703e-07
Constraint Violation 5.6188e-13
Non-satisfied Constraints 108, 110

point is chosen. There are two nonlinear inequality constraints, which are 108
and 110, not satisfying the negative conditions,i.e. g108(X) > 0 and g110(X) > 0
in the optimal point.
The sensitivity analysis is performed. The constraint associated with the largest
Lagrange multiplier is changed at step 45 from upper bound constraint number
33 to nonlinear inequality active constraint number 109. The new minimum
objective function value is 0.2405, decreased from 0.6087.

Figure 14: Procedure in obj63AS0. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.

The nonlinear equality constraints are converted and Table 11 gives the values
for the optimal point in the feasible set.
Table 12 shows that 41 initial points from 50 initial points lead to a feasible
solution. However, they give 32 distinct local solutions. Again, the optimal
point is chosen due to the similarities in the values of the objective functions and
variables of the local solutions5. There are two nonlinear inequality constraints,
which are 108 and 110, not satisfying the negative conditions,i.e. g108(X) > 0
and g110(X) > 0 in the optimal point. The decrease in the optimal objective
function by the conversion is 0.02824, which also means that the change in the

5To see the difference between different local solutions, please see Appendix B
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Figure 15: Sensitivity Analysis in obj63AS0

Table 11: Variables at the optimal point in feasible set for obj63AS1

X1 1.0418 X12 2.0955e-25 X23 0.98865
X2 -1.1294e-42 X13 1.0109 X24 1.023
X3 1.53 X14 1.3713 X25 1.0375
X4 1.53 X15 1.1114 X26 1.0312
X5 1.53 X16 0.46998 X27 1.0942
X6 1.53 X17 0.68489 X28 1.1185
X7 1.53 X18 0.2 X29 1.2186
X8 1.53 X19 0.89012 X30 1.1466
X9 1.53 X20 0.74349 X31 1.1145
X10 1.53 X21 1.2321 X32 1.0442
X11 -0.51001 X22 0.95 X33 1.1429

Table 12: Information on the feasible set and the optimal point for obj63AS1

Number of local solutions acquired 41
Number of distinct local solutions 32
Optimal Objective Function 0.58044
Exitflag 1
Number of Iterations 78
First Order Optimality 6.8985e-07
Constraint Violation 4.4605e-13
Non-satisfied Constraints 108, 110
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constraints causes around 4.64% decrease in the optimal value of the objective
function.
The sensitivity analysis is applied. The constraint associated with the largest
Lagrange multiplier is changed at step 43 from upper bound constraint number
33 to nonlinear inequality active constraint number 109. The new minimum
objective function value is 0.2405, decreased from 0.5804.

Figure 16: Procedure in obj63AS1. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.

Figure 17: Sensitivity Analysis in obj63AS1

3.2.2 SQP

The whole process in the previous section is repeated with the local algorithm
sqp. Table 13 gives the values for the optimal point in the feasible set.
Table 14 shows that 30 initial points from 50 initial points lead to a feasible
solution. However, they give 21 distinct local solutions. Again, the optimal
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Table 13: Variables at the optimal point in feasible set for obj63SQP0

X1 1.1971 X12 0 X23 1.1976
X2 0 X13 0.91201 X24 1.2466
X3 1.53 X14 1.2212 X25 1.2738
X4 1.53 X15 1.0391 X26 1.274
X5 1.53 X16 0.48744 X27 1.3414
X6 1.53 X17 0.6911 X28 1.3746
X7 1.53 X18 0.2 X29 1.4904
X8 1.53 X19 0.83048 X30 1.4188
X9 1.53 X20 0.81881 X31 1.362
X10 1.53 X21 1.2321 X32 1.2603
X11 -0.51001 X22 0.95 X33 1.1429

Table 14: Information on the feasible set and the optimal point for obj63SQP0

Number of local solutions acquired 30
Number of distinct local solutions 21
Optimal Objective Function 0.60868
Exitflag 1
Number of Iterations 82
First Order Optimality 8.3684e-07
Constraint Violation 8.1943e-13
Non-satisfied Constraints 108, 110
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point is chosen due to the similarities in the values of the objective functions and
variables of the local solutions6. There are two nonlinear inequality constraints,
which are 108 and 110, not satisfying the negative conditions,i.e. g108(X) > 0
and g110(X) > 0 in the optimal point.
The sensitivity analysis is performed. The constraint associated with the largest
Lagrange multiplier is changed at step 45 from upper bound constraint number
33 to nonlinear inequality active constraint number 109. The new minimum
objective function value is 0.2405, decreased from 0.6087.

Figure 18: Procedure in obj63SQP0. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.

Figure 19: Sensitivity Analysis in obj63SQP0

The nonlinear equality constraints are converted and Table 15 gives the values
for the optimal point in the feasible set.

6To see the difference between different local solutions, please see Appendix B
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Table 15: Variables at the optimal point in feasible set for obj63SQP1

X1 1.0418 X12 0 X23 0.98865
X2 0 X13 1.0109 X24 1.023
X3 1.53 X14 1.3713 X25 1.0375
X4 1.53 X15 1.1114 X26 1.0312
X5 1.53 X16 0.46998 X27 1.0942
X6 1.53 X17 0.68489 X28 1.1185
X7 1.53 X18 0.2 X29 1.2186
X8 1.53 X19 0.89012 X30 1.1466
X9 1.53 X20 0.74349 X31 1.1145
X10 1.53 X21 1.2321 X32 1.0442
X11 -0.51001 X22 0.95 X33 1.1429

Table 16: Information on the feasible set and the optimal point for obj63SQP1

Number of local solutions acquired 33
Number of distinct local solutions 20
Optimal Objective Function 0.58044
Exitflag 1
Number of Iterations 85
First Order Optimality 4.8782e-07
Constraint Violation 1.0933e-13
Non-satisfied Constraints 108, 110
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Table 16 shows that 33 initial points from 50 initial points lead to a feasible
solution. However, they give 20 distinct local solutions. Again, the optimal
point is chosen due to the similarities in the values of the objective functions and
variables of the local solutions7. There are two nonlinear inequality constraints,
which are 108 and 110, not satisfying the negative conditions,i.e. g108(X) > 0
and g110(X) > 0 in the optimal point. The decrease in the optimal objective
function by the conversion is 0.02824, which also means that the change in the
constraints causes around 4.64% decrease in the optimal value of the objective
function.
The sensitivity analysis is applied. The constraint associated with the largest
Lagrange multiplier is changed at step 43 from upper bound constraint number
33 to nonlinear inequality active constraint number 109. The new minimum
objective function value is 0.2405, decreased from 0.5804.

Figure 20: Procedure in obj63SQP1. U stands for Upper bound constraints,
NLI stands for Nonlinear inequality constraints and L stands for Lower bound
constraints. Step shows the number of modification and finding a new optimum.

3.3 Comparison in the Results

In general, both algorithms in the fmincon solver give very similar results even
though their implementation is different.

All the sensitivity analyses show that there is a better solution available.
The modification of the upper or lower bound constraints has relatively large

impact on the objective function function comparing to the modification of the
nonlinear inequality constraints.

There are certain constraints that are not satisfied at the optimal solutions.
Especially the nonlinear inequality constraint numbers 108 and 110 are not sat-
isfied in all the cases. Nevertheless, when they are applicable, all the nonlinear
equality constraints are always satisfied.

The number of iterations or the execution time depends on the complexity
of the objective function and the tolerances in numerical optimization.

7To see the difference between different local solutions, please see Appendix B
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Figure 21: Sensitivity Analysis in obj63SQP1

4 Conclusion

4.1 Summary

We briefly summarize the methodology we used when performing the sensitivity
analysis. First, 50 different initial points are created by the MultiStart solver
satisfying the upper and lower bound constraints but they are not feasible with
respect to the nonlinear constraints. A feasible set is generated by these points
that lead to a feasible solution by using fmincon solver and it is kept in or-
der to use in future. The optimal point is also found by the fmincon solver
and Lagrange multipliers associated with the active constraints at the point are
computed by the fmincon solver. Based on the information from Lagrange mul-
tipliers, the active constraint with the highest Lagrange multiplier is perturbed
by increasing or decreasing the right-hand side of inequality constraints and the
new problem is resolved. The resolved objective function value is compared to
the previous objective function value, the same procedure of computation of all
Lagrange multipliers associated with the new active constraints, modification
of the constraint with the highest Lagrange multiplier and resolution of the
new problem is repeated until there is no more decrease in the objective func-
tion. Finally, the whole procedure is repeated again when equality constraints
are substituted by the pairs of inequality constraints. The result of this study
shows the sensitivity of the given objective functions with different algorithms
in fmincon solver and their final results.

4.2 Future Research

There are certain variables that cannot change during the optimization prob-
lem such as Variable 2 and Variable 12, because their upper and lower bound
constraint values are the same. If they are omitted, the optimization problem
might become more flexible.

There are certain nonlinear inequality constraints that are not satisfied and
they are usually related to the initial points in the feasible set. The initial points
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or the feasible set could be picked very carefully in order to solve the constraints
issue.
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A Modification of Nonlinear Inequality Constraints
in MATLAB file

The modification in the three cases, such as increasing a maximum constraint,
decreasing a minimum constraint as and a non-changing constraint in MATLAB
file.

ii max ineq=0; %Constraint Number
active %Active Constraint Number

%An example for a minimum constraint
% b2min
for ii=1:N−1
ii max ineq=ii max ineq+1;

if sum(ii max ineq==active)==1
C(ii max ineq)=0.99−OPT.w exit OPT(ii)/NXT.b2 min(ii);

else
C(ii max ineq)=1.00−OPT.w exit OPT(ii)/NXT.b2 min(ii);

end

% C(ii max ineq)=1.00−OPT.w exit OPT(ii)/NXT.b2 min(ii); (before)
end

%An example for a maximum constraint
% b2max
for ii=1:N−1
ii max ineq=ii max ineq+1;

if sum(ii max ineq==active)==1
C(ii max ineq)=OPT.w exit OPT(ii)/NXT.b2 max(ii)−0.99;

else
C(ii max ineq)=OPT.w exit OPT(ii)/NXT.b2 max(ii)−1.00;

end

% C(ii max ineq)=OPT.w exit OPT(ii)/NXT.b2 max(ii)−1.00; (before)
end

%An example for a non−changing constraint
% tetmin, = 0
for ii=1:N
ii max ineq=ii max ineq+1;

if sum(ii max ineq==active)==1
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C(ii max ineq)=−OPT.tet OPT(ii);
else

C(ii max ineq)=−OPT.tet OPT(ii);
end

% C(ii max ineq)=−OPT.tet OPT(ii); (before)
end

B Other Distinct Local Solutions

The other distinct local solutions are subtracted by the optimal point in order
to see the differences between them. Moreover their number of iterations, first
order optimality and constraint violation are compared. The red line in the first
optimality and constraint violation plots represents the tolerance used in fmin-
con solver. The order of the figures goes as obj63SQP0, obj63SQP1, obj63AS0
and obj63AS1, respectively. Note that, since there are exitflags 5 in obj63AS1,
they give a large difference and if they are omitted, a general difference between
the local solutions is around 10−11 in the objective function value and around
10−5 in the variables. These differences are also valid for the other methods.
Since the differences are small, they all can be assumed as one point, which is
the optimal point.
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Figure 22: Difference in X-vector for obj63SQP0
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Figure 23: Comparison in local solutions for obj63SQP0
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Figure 24: Difference in X-vector for obj63SQP1
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Figure 25: Comparison in local solutions for obj63SQP1
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Figure 26: Difference in X-vector for obj63AS0
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Figure 27: Comparison in local solutions for obj63AS0
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Figure 28: Difference in X-vector for obj63AS1
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Figure 29: Comparison in local solutions for obj63AS1
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Figure 30: Difference in X-vector for obj63AS1
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Figure 31: Comparison in local solutions for obj63AS1
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