
Institutionen f�or informationsteknologi

Detecting Performance Degradation in
Code Based on Execution Times of
Unit Tests

Johan Venemalm
Project in Computational Science

January 23, 2014

P
R
O
JE

C
T
R
E
P
O
R
T

Abstract
In many applications there is a need to determine when a change in the
statistical properties of a series of data points occurs. The process of
detecting the temporal location of a time instance is called change point
detection. There are two fundamentally different approaches to change
point detection today: parametric models and non-parametric models.

Within the parametric framework the goal is to find a model that fits
data to sufficient extent. In most cases, however, this approach does not
work well since it might be impossible to derive a closed-form analytic
formula for the underlying statistical distribution. The most frequent sit-
uation in real-world applications is that the data generating mechanism
is unknown. Hence, one must rely entirely on non-parametric methods.

This paper discusses essentially two different non-parametric approaches
to change point detection in univariate time series data. First, it discusses
the bootstrap method and a modification of it called the stationary boot-
strap. These methods fall into the class of resampling methods in applied
statistics. Next, it discusses the Kullback-Leibler Importance Estimation
Procedure (KLIEP) which is a density estimation algorithm developed
by Japanese researches. Finally, a general algorithm for change point
detection is outlined and performance of the three methods is evaluated.

Keywords
Change Point Detection, Non-Parametric Modeling, Bootstrap, Station-
ary Bootstrap, Kullback-Leibler Importance Estimation Procedure (KLIEP)

Acknowledgements
I would like to thank Schlumberger for the initiative to shine light on
this increasingly important problem and to grant me the opportunity to
excercise the project. In particular, I am thankful for my supervisor Ivar
Bratberg’s cooperation during the project phase, who has responded to
my emails with perseverance.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Basic Assumptions . 2
1.3 The Advantage of Non-Parametric Modeling 3
1.4 Data Preprocessing . 4

2 The Non-Parametric Approach to Change Point Detection 7
2.1 Problem Formulation . 7
2.2 The Bootstrap as a Tool for Non-Parametric Inference 8
2.3 The Stationary Bootstrap . 9
2.4 Change Point Detection with Bootstrap 10
2.5 Kullback-Leibler Importance Estimation Procedure

(KLIEP) . 12
2.6 Change Point Detection with KLIEP 14
2.7 A General Algorithm for Change Point Detection 16

3 Results 18
3.1 Parameter Selection . 18
3.2 Type I Errors . 19
3.3 Type II Errors . 20

4 Discussion 25
4.1 Type I Errors . 25
4.2 Type II Errors . 25
4.3 General Topics . 26

5 Conclusion 28

List of Figures

1.1 Univariate outliers can be eliminated using a boxplot technique. By

construction, this is a robust outlier reduction method. In the figure,

the red line represents the median of the data set and the blue lines

on the boundary of the box denote the lower and upper quartiles. The

whiskers extend to the most extreme data points and can be controlled

by changing k as in (1.2). All observations located outside the whiskers

(marked with the + symbol) are classified as outliers. 5
3.1 Type I errors computed with respect to a purified stationary data

set for the standard bootstrap, stationary bootstrap and KLIEP as a

function of the ratio between the length of the test and reference inter-

vals. The errors are plotted for two choices of the level of significance,

namely α = 5 % and α = 1 %, respectively. 19
3.2 Type II errors rates for a purified stationary data set plotted as a

function of the test interval factor of increase K for different combi-

nations of the reference and test interval lengths. The indicator (1)

corresponds to the interval length combination (nrf , nte) = (50, 50)

whilst the indicator (2) corresponds to (nrf , nte) = (50, 100). Here the

level of significance α = 5 % is fixed. 20
3.3 A realization of an artificial non-stationary process for Model (1) (⇐⇒

f = µt) for the data set defined by equation (3.6). The black zigzag

line shows the local mean of the process. 21
3.4 Type II errors rates for a realization of the first artificial data set

defined by equation (3.6) (Model (1)) plotted as a function of the test

interval factor of increase K for (nrf , nte) = (60, 90). Here the level of

significance is 1 % and 5 %, respectively. 22
3.5 Type II errors rates for a realization of the second artificial data set

defined by equation (3.6) (Model (2)) plotted as a function of test

interval factor of increase K for (nrf , nte) = (60, 90). Here the level of

significance is 1 % and 5 %, respectively. 23

1 Introduction

1.1 Background

In today’s fast-pace environment, tech companies maintaining large code pack-
ages are facing the challenge of steady addition and modification of code. To
measure the effect of regular addition, removal and modification of existing
code, multiple measurements are often performed on a daily basis, where each
run measures the execution time of a small fraction of the total code. These
tests are called unit tests. If the code package is very large, this means that
many tests are run. Moreover, if the measurement frequency is high a lot of
data is generated and must be subsequently analysed.

To manually decide whether an increase in execution time has occured for
a particular unit test requires going through all unit tests and visually inspect
at what time instance the mean level has shifted upwards (if any such shift can
be detected). This might be extremely time-consuming or even impossible to
achieve in practice. The problem of knowing whether performance degradation
(an increase in observed execution time) has really occured also persists, since
infrequent random fluctuations might have caused some observed abnormal be-
haviour. It is evident that statistical methods are needed to resolve the issue of
whether a sequence of observations is significantly different from a preceeding
sequence of observations. It is therefore natural to implement an automatic
detection scheme to be able to cope with potentially non-stationary time series
data sequences.

The problem of detecting changes in time series data has been widely studied
in literature. Within the data mining community, a change point is defined as a
time instance where the statistical properties of the underlying stochastic pro-
cess change. There are many models proposing different approaches on how to
tackle this problem, but many of them rely on very limited assumptions about
the nature of the data. As I was doing preliminary research, I observed that
many articles were assuming artificial data sets and particular mathematical
properties for the time series being investigated. In this project, the data is
completely unknown and, additionally, the number of data series is extremely
large. It is therefore impossible to find a general parametric model in any way
or in any substep of the resulting change point algorithm to resolve the problem.
It might even be impossible to fit a single parametric model to a data series due
to complete lackness of the underlying probability distribution(s)1.

After having convinced myself that parametric modeling is unable to resolve
the issues arising from unknown data, I had to turn around to look at non-
parametric alternatives; in particular, the bootstrap procedure. The bootstrap
method belongs to a class of resampling algorithms that treat the data sample
as an approximation of the true distribution, and attempts to make inferences
about a statistic by re-drawing samples with replacement from the observed

1It cannot be excluded that an observed data series comes from several underlying prob-
ability distributions. It is, more likely, a relatively probable case for many unit test data
series.

1

data sequence. Being promising in terms of solid mathematical properties that
make the method attractive, it still cannot be applied directly to non-stationary
data without minor modification and a few basic assumptions.

There was, however, one paper that caught my interest as I was looking for
potential candidate solutions. Authored by two Japanese researchers named
Yoshinobu Kawahara and Masashi Sugiyama, their paper Change-Point De-
tection in Time-Series Data by Direct Density-Ratio Estimation proposes an
entirely new way of estimating whether a change in a distribution has occured
without any parametric assumptions [1]. As pointed out earlier, parametric
assumptions often tend to produce inaccurate and wrong results when those
assumptions in reality cannot be met. Their method is principally based on an
algorithm outlined in an earlier paper by Sugiyama et al. ([2]) that approxi-
mates the ratio of probability density functions without going through direct
density estimation, and applies a statistical test to the result. This density
estimation algorithm, referred to as Kullback-Leibler Importance Estimation
Procedure (KLIEP), borrows several concepts from machine learning but can
be considered non-parametric in the sense that one avoids the need for estima-
tion of the individual densities in the two sample sets. Many ideas from the
change point detection approach stated in their paper ([1]) can be found in the
algorithm given in this paper.

A natural way to look for abrupt deviations in a time series is to partition
the data into smaller intervals or segments. Two consecutive intervals are then
analyzed separately; hence the change point is taken to be between the last
observation in the first interval and before the first observation in the second in-
terval. This implies that we might detect a region of consecutive change points.
In those situations, with large confidence one can say that a change in the sta-
tistical properties of the data sequence occurred somewhere in that region.

In the next subsection, we state and justify a few basic assumptions that the
analysis requires before dealing with the real problem.

1.2 Basic Assumptions

Statistical papers rely on a basic set of assumptions of a certain kind. Even
though we exclusively rely on non-parametric measures in the analyses, a few
conditions must be fulfilled for the solutions to be realistic.

First, we conjecture that each unit test can be analysed independently. In
probabilistic terms, this means that the intersection between two unit tests is
zero2.

Secondly, each unit test can be considered to be sampled from a single dis-
tribution during a limited time interval, such that the statistical properties are
approximately intact. This assumption is strongly affected by the sample length
and the frequency for non-stationary oscillations of the execution time measure-
ments. The motivation for this assumption is that during sufficiently small sam-

2This means that each unit test tests a unique part of the code, i.e., they are atomic.

2

ple intervals and a limited performance decrease (increase) of the code within a
certain unit test, the distributional properties will not deviate considerably from
the previous underlying distribution. If the code is essentially optimized a priori
it is reasonable to assume that the change from one interval to the subsequent
is not too large.

Finally, we assume an existing set of observations, the training set, that is
supposed to have been generated identically and independently (i.i.d.) from a
stationary distribution for a given unit test. In other words, given a unit test,
the expected value is assumed to be constant and the autocorrelation function
is assumed to be zero for all observations belonging to the stationary training
set.

We summarize the above assumptions in the following item list.

� Each unit test can be considered independent from the rest. This means
that each test treats a non-overlapping piece of the code and that we
expect no correlation between any two unit tests.

� During a sufficiently small interval, the sequence of observations for a
given unit test can be considered approximately stationary. If a minor
change occurs and the sample is not too large, the distribution will hope-
fully not change significantly. The extreme situation where this assump-
tion becomes weak occurs in a situation where a large jump in measured
execution time takes place. Processes that exhibit high non-stationarity
would be problematic to handle.

� The training set, that is, the set of observations generated by repeated
measurements without any modification of existing code, is assumed to be
an i.i.d. sample3.

We end this section by briefly discussing the advantages of using non-parametric
modeling instead of the traditional parametric approach.

1.3 The Advantage of Non-Parametric Modeling

In statistics, non-parametric modeling is the use of models that lack specific
assumptions about the characteristic structure of data or the model behind the
data. This is in direct contrast to the traditional parametric modeling, which is
almost only taught at universities. Parametric models assume that one knows
the structure of the data a priori. To justify the assumption of a specific model,
one can apply statistical tests (most of them to check whether data is normal
distributed or not) and/or transform the data so that the statistical properties
are improved. The non-parametric approach is crucial for this work since i) the
underlying data displays large variety in terms of the shape of the distributions,
and ii) even if parametric models would be possible to fit via application of
goodness-of-fit methods, these procedures would be too complex to carry out in

3In practice, the training sample is not perfectly i.i.d. due to measurement errors. The
assumption is nevertheless reasonable and necessary for testing the null hypothesis.

3

practice. Even within the non-parametric framework, the computational time
quickly becomes large, and for continuously growing time series the problem
will only increase substantially over time.

The advantage of using non-parametric modeling cannot be stressed enough
due to the nature of the data generating process. Without making any vague
assumptions about the nature of the data or the asymptotic properties of the
time series, we can use non-parametric techniques to avoid this major drawback.
Of course, minor assumptions have to be made (see subsection 1.2), but they
can be limited with decent choices of input parameters in the algorithm that
searches for statistically significant upward deviations.

1.4 Data Preprocessing

The data that has been used for training consists of a set of roughly 50,000 unit
tests, each consisting of 202 nonnegative integer-valued observations. The latter
means that the observations are only sampled with integer accuracy, even though
the observations in reality are sampled from a continuous distribution. Due to
the data measuring process, some observations are very small (in the extreme
case, 0) and some are very large. The zero observations arise when the tests
are not run, whilst extremely large observations can result if the measurement
process is hanging4. Moreover, some unit tests contain a small fraction of non-
zero observations and some of them also display poor variability and only consist
of a few distinct entries. The original data set is thus contaminated with certain
entries that would have a negative impact on the performance of the algorithms.

In order to capture the interesting part of the data, data cleansing and outlier
removal is required. The zero observations are easily removed on the fly, whereas
threshold parameters can filter out tests that do not meet the requirements of
minimum variability and a certain minimum length. The remaining observations
that need to be processed are the extreme observations and will be referred to
as outliers.

Outlier deletion is a well-known problem in the data mining community
and is also known as anomaly or outlier detection. In multi-dimensional cases,
the situation would be far more complicated, but luckily we are dealing with
univariate data.

To start with, let us define what we refer to as an outlier. According to
the definition by Hawkins (1980), an outlier is ”an observation that deviates so
much from other observations as to arouse suspicion that it was generated by a
different mechanism”. Inspired by this definition, one could as an example apply
the definition to the hypothetical case of normal distributed data. Here, values
falling far away from the mean in a normal distribution can be considered to be
outliers if sufficient understanding of the underlying data generating process is
known. In financial data, for instance, outliers should be treated with extreme
care since they are often more important than the middle-range observations.

4The measurements are run on a server with varying loads. Sometimes, the measurements
stall without halting the measurement of the execution time.

4

0

500

1000

1500

2000

2500

3000

3500

1

M
ea

su
re

d
E

xe
cu

tio
n

T
im

e

Univariate Outlier Elimination Using Boxplot Technique

Figure 1.1: Univariate outliers can be eliminated using a boxplot technique. By
construction, this is a robust outlier reduction method. In the figure, the red line
represents the median of the data set and the blue lines on the boundary of the box
denote the lower and upper quartiles. The whiskers extend to the most extreme data
points and can be controlled by changing k as in (1.2). All observations located outside
the whiskers (marked with the + symbol) are classified as outliers.

However, let us assume that we have knowledge about the data generating
mechanism. Then we can without hesitation eliminate observations that fall
outside a pre-specified standard normal confidence interval.

Specifically, if x1, ..., xn is a set of observations from the standard normal
distribution N (0, 1) and x̄, sx denote the sample mean and sample standard
deviation, respectively, then an observation xo is declared an outlier given that

|xo − x̄|
sx

> λα, (1.1)

where λα denotes the standard normal quantile for a given α (≈ 3 if a 99 %
confidence interval is sought). Unfortunately, data is not normal distributed in
our case. However, the same idea can be applied if the data is visualized in
a boxplot (Figure 1.1). This requires interchanging the mean for the first and
third sample quartiles, Q1 and Q3, which are robust measures of the center of
the lower and upper ranges of a data sample, and to interchange the sample
standard deviation for the interquartile range, IQR := Q3 − Q1, which is a
robust measure of variability [3]. Thus, for data from any type of distribution,

5

an observation is classified as an outlier if

Q1 − xo
IQR

> k, or
xo −Q3

IQR
> k, (1.2)

where k is a parameter with a similar role as the quantile function for the
standard normal distribution. We let k = 1.5 classify an outlier as mild whilst
k = 3 filters out extreme outliers from the data sample.

Outlier elimination is naturally executed after data cleansing.

6

2 The Non-Parametric Approach to Change Point
Detection

Two mathematically different non-parametric models are proposed for detect-
ing whether a performance degradation has occured between two consecutive
samples of given lengths. This section provides a walkthrough of the bootstrap
and a modification of it called the stationary bootstrap, as well as the Kullback-
Leibler Importance Estimation Procedure (KLIEP) method. The reader should
note that the aim here is not to provide a thorough mathematical background
for any of the three methods, but to give the basic ideas and equations behind
them. The interested reader should therefore consult the bibliographic section
in this paper for a more detailed and in-depth analysis of the tools that are used
here.

2.1 Problem Formulation

Given is a cleansed, outlier-free, positive integer-valued univariate data set de-
noted by Xj = (xj,1, ..., xj,n) ∼ Fj,n, where j = 1, ..., J and {Xj ∈ Z+, j =
1, ..., J} is sampled from some true distribution Fj,n. In general, Fj,n can con-
tain a mixture of different distributions and is then a non-stationary time se-
ries. Here, the observations xj,1, xj,2, ... are thus not necessarily independent5.
Choose next two consecutive non-overlapping subsets Y rf,j = (yrf,j,1, ..., yrf,j,nrf

)
⊂Xj , Y te,j = (yte,j,1, ..., yte,j,nte) ⊂Xj of length nrf and nte respectively. The
first observations in each set were observed at time instances trf , tte, with the
current time instance t = tT = trf +nrf +nte− 1. The first subset is called the
reference interval and the second subset is called the test interval ; the latter is
a set where the statistical properties might have changed with respect to the
reference set. If the length of the samples is not too large, they can be treated
as approximately stationary under the assumption from subsection 1.2.

Next, introduce the shift size ws, supported on the set {1, ..., n−nrf −nte}.
This parameter controls the number of elements that the reference and test
intervals are shifted with after the computations are finished on an arbitrary
reference-test sample pair. If tCP denotes a candidate change point, then
tCP + ws is the next candidate change point under consideration.

The special case of ws = 1 corresponds to the unit shift. By sliding with the
size of one unit, it is possible to detect a consecutive sequence of change points.
The larger the sequence, the stronger the evidence in favour of a change pont
scenario between the reference and test intervals.

The task is to find a time point between consecutive time intervals where
a statistically significant degradation has occured. We formulate the foloowing
two hypotheses

H0 : No change has occured vs. H1 : An upward change has occured. (2.1)

5The stationary bootstrap takes into account dependencies between observations. It is a
slight modification of the standard bootstrap method and is studied in subsection 2.3.

7

If H1 cannot be rejected, tCP is alarmed as a potential time point of an
upward shift in the time series. Depending on whether the bootstrap technique
or KLIEP is used, the test statistic will be different. The complete formulation
for both approaches is given in the corresponding sections.

2.2 The Bootstrap as a Tool for Non-Parametric Inference

The bootstrap method was originally invented in 1979 by Bradley Efron [4]. It
belongs to a broader class of computer based statistical methods called com-
puter intensive methods; these include mainly the Jackknife, Cross-Validation,
and Permutation Tests. Although the first two methods are used for other pur-
poses, they are important tools in the area of applied statistics today.

The bootstrap methodology quickly became popular due to its wide ap-
plicability. Its strength relies on assumptions that are often met in practice.
The bootstrap approach is outlined as follows: Given an observed i.i.d. sample
X = {x1, ..., xn}, one claims that the observed sample approximates the true
distribution F by the empirical distibution function Fn. Important asymptotic
properties state that the observed distribution converges to the true distribution
as the sample size approaches infinity. If Fn poorly approximates the true dis-
tribution and if θ = θ(X1, ..., Xn) is the statistic of interest, then the bootstrap
estimate of a statistic, θ∗ = θ∗(x∗1, ..., x

∗
n), with x∗1, ..., x

∗
n being the bootstrapped

sample under replacement, will not be much better. If the reverse is true, then
the resampled distribution F ∗n is a good approximation of F . Repeated com-
putation of the statistic of interest under F ∗n yields the bootstrap replicates θ∗i ,

i = 1, ..., B, and results in better and better approximation of θ̂∗B = 1
B

∑B
i=1 θ

∗
i .

One can thus control the Monte Carlo error of the statistic under consideration
by increasing the value of B. The bootstrap approach essentially mimics the
traditional approach but generates pseudo observations based on already ob-
served data.

One problem with the bootstrap method for time series data is the feature
of non-stationarity. There are many papers proposing different bootstrap tech-
niques for versions of non-stationary data, but none of them can be directly
applied to data that might potentially change fast in time. The local block
bootstrap proposed by E. Paparoditis and D. N. Politis is promising for slowly
changing stochastic processes (typically evolutionary data or potentially a fi-
nancial time series). It is based on the idea of resampling blocks of constant
size in a local neighbourhood around a data point. For large time series, nu-
merous local neighbourhoods emerge and consequently it would make sense to
employ a local bootstrap technique. However, I have access to a very small
data sample (less than 200 observations after the cleansing and outlier removal
process is completed) which means that the local bootstrap would in practice
mimic another version of the standard bootstrap called the stationary bootstrap.
The most essential difference would be that in the latter case, the block size is

8

stochastic6.
The stationary bootstrap relies on the assumption of approximate station-

arity of a data sequence. Also proposed by D. N. Politis and J. P. Romano
for resolving issues involving dependency in data ([6]), the stationary bootstrap
generates a pseudo time series that is actually stationary under the assumption
of weak stationarity. The stationary bootstrap method is explored in subsection
2.3.

2.3 The Stationary Bootstrap

The stationary bootstrap was proposed by D. N. Politis and J. P. Romano ([6])
for resolving issues regarding dependency in data. In this paper, a subsample
(reference- or test set) is assumed to be approximately stationary under some
conditions. However, there might exist dependencies between data in the sample
intervals. The stationary bootstrap method resolves these issues under the
assumption of a weakly dependent time series. Intuitively, a series is weakly
dependent if two observations xt, xt+h are almost uncorrelated as h −→ 0. In
our framework, that is reasonable to assume.

A brief overview of the stationary bootstrap is given in this subsection. All
details can be found in the original paper by Politis et al.

Let BI1,L1
, BI2,L2

, ... be a sequence of blocks of lengths L1, L2, ... starting
from indices I1, I2, ... The integers L1, L2, ... form a sequence of i.i.d. random
variables following a geometric distribution. Thus, the probability of drawing a
block of length m is given by

P (Li = m) = (1− p)m−1p, m = 1, 2, ... (2.2)

The integers I1, I2, ... form a sequence of i.i.d. random variables from a
discrete uniform distribution. The probability of choosing a starting index
i ∈ {1, ..., nobs} is inversely proportional to the number of observations in the
sample, nobs:

P (Ii = k) =
1

nobs
, k = 1, ...nobs. (2.3)

It should be noted that the choice for Li having a geometric distribution
and Ii having a discrete uniform distribution was made so that the resampled
distribution remains stationary. There are, however, other possible resampling
schemes that preserve stationarity.

At last, the pseudo generated series should be of the same size as the original
series, that is

∑

k

Lk = nobs. (2.4)

6The starting index for a block in the local bootstrap algorithm does not necessarily have
be sampled from a uniform distribution as in the case of the stationary bootstrap.

9

It remains to choose a value for p which controls the geometric average block
length. Previous studies on block resampling algorithms in statistics have led
to conclusions that the optimal block length grows (c.f., e.g., [7]) as

Lopt ∝ N1/3. (2.5)

Hence, for a particular data sequence of size N the probability parameter p
can be picked as

p =
1

N1/3
. (2.6)

In the situation under consideration, we simulate sequences of bootstrap
blocks Y ∗rf,j = B∗rf,j,I1,L1

∪ B∗rf,j,I2,L2
∪ ... ∪ B∗te,j,Ik,Lk

, Y ∗te,j = B∗te,j,I1,L1
∪

B∗te,j,I2,L2
∪ ... ∪ B∗te,j,I′k,L′

k
, where the first subscript signifies the sample type

(reference or test) and (·) signifies either of the intervals, the second subscript
specifies the particular unit test, and the last two subscripts are as before. An
arbitrary bootstrap block in any sample can thus be expressed as

B∗(·),j,Ii,Li
= (b∗(·),j,Ii , b

∗
(·),j,Ii+1, ..., b

∗
(·),j,Ii+Li−1).

In the next subsection a formalized change point detection scheme using the
bootstrap methodology is outlined. We will drop the block notation from this
subsection to avoid multiple notations. Thus, observations y∗(·),j,i could corre-
spond to observations generated according to the stationary bootstrap scheme.
The only difference is that a dependency structure between consecutive obser-
vations exists.

2.4 Change Point Detection with Bootstrap

Let as before Y rf,j = (yrf,j,1, ..., yrf,j,nrf
) ⊂ Xj , Y te = (yte,j,1, ..., yte,j,nte

) ⊂
Xj denote the reference and test samples of length nrf and nte, respectively.
Further, let

Ŷ rf,j :=
1

nrf

nrf∑

i=1

yrf,j,i, Ŷ te,j :=
1

nte

nte∑

i=1

yte,j,i (2.7)

denote the observed replicates of the arithmetic mean of reference- and test
samples, respectively. Let also

Tj = Tj(Ŷ rf,j ; Ŷ te,j) := Ŷ te,j − Ŷ rf,j , j = 1, ..., J, (2.8)

be the test statistic symbolizing the mean difference between the reference and
test samples.

The hypothesis then reads

H0 : Tj = 0 vs. H1 : Tj > 0, j = 1, ..., J.

10

Following the bootstrap methodology, resampling with replacement from
Y rf,j ,Y te yields the bootstrap observations Y ∗rf,j = (y∗rf,j,1, .., y

∗
rf,j,nrf

) ∼
F̂rf,j,nrf

and Y ∗te,j = (y∗te,j,1, ..., y
∗
te,j,nte

) ∼ F̂te,j,nte
, where F̂(·),j,n denotes the

observed empirical distribution function of a general distribution F(·)j,n. In case
of applying the stationary bootstrap, the observations contained in Y ∗rf,j , Y

∗
te,j

have been generated in a blockwise manner, taking local dependency into ac-
count.

Introduce the test statistic for the mean difference between the reference and
test bootstrap samples conditional on the original sample for the b:th bootstrap
replicate:

T ∗j,b = T ∗j,b(Ŷ
∗
rf,j ; Ŷ

∗
te,j |Y rf,j ;Y te,j) :=

1

nte

nte∑

k=1

y∗te,j,b,k −
1

nref

nrf∑

k=1

y∗rf,j,b,k =

Ŷ
∗
te,j,b − Y ∗rf,j,b, for j = 1, ..., J and b = 1, ..., B.

(2.9)

To provide an explicit formula for the stationary bootstrap, the test statistic
can be written as

T ∗j,b = T ∗j,b(Ŷ
∗
rf,j ; Ŷ

∗
te,j |Y rf ;Y te,j) :=

1

nte

m2∑

k=1

Lk−1∑

l=0

b∗te,j,Ik+l −
1

nrf

m1∑

k=1

Lk−1∑

l=0

b∗rf,j,Ik+l,

for j = 1, ..., J, b = 1, ..., B,

(2.10)

where m1,m2 denote the number of blocks in the two intervals.
Denote by tCP a candidate change point, i.e., trf +nrf − 1 < tCP < tte. To

check whether Y te,j is significantly different from Y rf,j with respect to tCP , we
state the following hypothesis involving the bootstrap statistic T ∗j,b:

H0 : T ∗j,b = 0 vs. H1 : T ∗j,b > 0, j = 1, ..., J, b = 1, ..., B,

where T ∗j,b is the bootstrap test statistic. Let now α denote the level of sig-
nificance. By calculating B bootstrap replicates T ∗j,b it is possible to obtain a
100(1−α) % percentile confidence interval for the mean difference between ref-
erence and test intervals by ordering the bootstrapped values in an increasing
sequence, according to

T ∗j,1 ≤ T ∗j,1 ≤ ... ≤ T ∗j,B , j = 1, ..., J.

Define the lower and upper cut-off points kL := bα2 (B+1)c and kU := B+1−kL.
Then a 100(1− α) % percentile confidence interval for T ∗j,b is

[
T ∗j,kLT

∗
j,kU

]
, j = 1, ..., J. (2.11)

11

A decision whether a degradation has occured is thus taken if

0 /∈
[
T ∗j,kLT

∗
j,kU

]
=⇒ Reject H0, j = 1, ..., J. (2.12)

This confidence interval is known as a first order accurate confidence interval. It
is nevertheless the most intuitive confidence interval to construct. Since it holds
asymptotically that the bootstrap distribution converges to the normal distri-
bution for the statistic of interest, it would be natural to construct a Student’s
t confidence interval. The problem is that this requires equal sample sizes. In
general, the sample sizes might be different.

In the next subsection, we leave the resampling based methods for a moment
and turn our attention to an algorithm with origins from a problem frequently
occuring in machine learning.

2.5 Kullback-Leibler Importance Estimation Procedure
(KLIEP)

This subsection gives a brief overview of the KLIEP algorithm. The reader
should consult the corresponding paper found in the reference section for further
details.

The starting point for the foundation of the Kullback-Leibler Importance
Estimation Procedure (KLIEP) method is to find an efficient algorithm that
estimates the probability density ratio of a test distribution, pte, and a reference
distribution, prf for some input data. In the general case, the input data follows
continuous probability distributions. In our case, however, the data consists of a
set of discrete integers. Hence, we aim at estimating the ratio w = w(x), where
the input data comes from an integer-valued domain Dk := {k : k ∈ Z+}:

w(x) :=
pte(x)

prf (x)
, x ∈ Dk. (2.13)

Here, w(x) is called the importance and pte, prf > 0 are probability distri-
butions defined by some input data xte = (x1, ..., xnte

) and xrf = (x1, ..., xnrf
).

By simply looking at the equation, one could think of the naive way of esti-
mating the probability density functions directly, and then taking the ratio of
the respective probability densities. However, since this is known to be a hard
problem in practice, the goal of KLIEP is to avoid direct density estimation
and instead find a solution that estimates the ratio only using the input data
xte,xrf .

Let Kσ(x,x′) denote the Gaussian kernel function centered at the test point
x′. To begin, let us approximate the importance using an eigenfunction expan-
sion with a Gaussian kernel function centered at the test input points:

ŵ(x) =

b∑

l=1

αlKσ(x,xte,l). (2.14)

12

Here, αl are the parameters that need to be optimized. The output of
KLIEP is the set of weights {w(x) : x ∈ xte}, i.e., the importance is evaluated
at the corresponding test input sample points. The resulting importance is thus
modeled as a Gaussian kernel expansion with kernel width σ, centered at the
test sample. The Gaussian kernel is given by

Kσ(x,x′) = exp
(
− ||(x− x′||

2σ2

)
, (2.15)

where σ > 0 is the kernel width. Using equation (2.13), the test input
density can be approximated by

p̂te(x) = ŵprf (x). (2.16)

The goal is now to determine the parameters {αl}bl=1 such that the Kullback-
Leibler divergence from pte to p̂te is minimized. The Kullback-Leibler divergence
can be used to measure the difference between two probability distributions over
the same event space. Even though the measure does not fulfill all requirements
for being a metric (the Kullback-Leibler divergence does not hold for symmetry),
it is nevertheless a widely used theoretical measure in statistics and information
theory. The discrete Kullback-Leibler divergence is given by

KL
[
pte(x)||p̂te(x)

]
=
∑

x∈Dk

pte(x)ln
pte(x)

p̂te(x)
=

∑

x∈Dk

pte(x)ln
pte(x)

prf (x)
−
∑

x∈Dk

pte(x)lnŵ(x).

(2.17)

The trick is to observe that the second summation involves the importance
factor with coefficients αl to be determined. This term can be expanded by
approximating the probability distribution for the test set:

M :=
∑

x∈Dk

pte(x)lnŵ(x) ≈ 1

nte

nte∑

k=1

lnŵ(xte,k) =

1

nte

nte∑

k=1

ln
(b∑

l=1

αlKσ(x,xte,k)
)
.

(2.18)

The last term is of concave form, and hence the Kullback-Leibler divergence
is minimized when the last term is maximized. The resulting problem to be
solved becomes a convex optimization problem where the objective function is
given by M in the expression in (2.18). Imposing the constraints

1

nrf

nrf∑

k=1

b∑

l=1

αlKσ(x,xrf,k) = 1,

ŵ(x) ≥ 0,x ∈ Dk,
(2.19)

13

results in the convex optimization problem

max
{αl}bl=1

[
nte∑

k=1

ln
(b∑

l=1

αlKσ(x,xte,k)
)]

s.t.

nrf∑

k=1

b∑

l=1

αlKσ(x,xte,k) = nrf , α1, ..., αb ≥ 0.

(2.20)

The KLIEP algorithm solves this equation iteratively by using gradient as-
cent. Since the problem is convex, a unique global solution is guaranteed.

What remains is to perform model selection in order to obtain the kernel
functions Kσ. In general, one does not need to choose Gaussian kernels, but they
are mathematically convenient to work with and are proposed by the founders
of the algorithm. The KLIEP algorithm is equipped with a likelihood cross
validation (LCV) procedure that splits the test samples into R disjoint subsets
and approximates M in equation (2.18) by a a sample average. By repeating
this procedure for different kernel widths, one obtains the kernel that minimizes
M . What LCV does it to chooses the parameter set that is optimal given the
data at hand.

There are a few complications that need to be understood when applying
KLIEP. First, one needs to choose the number of kernels b heuristically. One can
for example choose b = min(nte, 100). Thus, the allocation of the kernel cen-
ters are in the test sample space, which was found to be computationally more
efficient. Moreover, since in general the test sample size can be made larger
than the reference sample size, the test density function will be larger than the
corresponding reference density function. This means that the output function
w(x) takes on larger values (i.e, the density is higher). Hence, allocating more
kernels in the test sample space boosts the accuracy of the resulting algorithm.

That being said, KLIEP can handle the case where nte > nrf . How the
reference and test interval lengths should be chosen depends on the degree of
non-stationary of the test interval. Note that it is essential that the intervals
remain approximately stationary.

2.6 Change Point Detection with KLIEP

From this point it is straightforward to derive a change point detection algorithm
using KLIEP. We mimic the overall terminology from the bootstrap sections
with a few modifications.

As before, let Y rf,j ,Y te,j denote the observed reference and test intervals
for unit test j = 1, ..., J . The aim is to approximate the importance defined as
the fraction

w(x) =
pte(x)

prf (x)
.

14

Here, prf , pte correspond to the empirical probability density functions from
the reference and test intervals, respectively. Without estimating them sepa-
rately, KLIEP is used to only estimate the fraction of the density function in
equation (2.6)7.

Let tT = trf + nrf + nte − 1 be the current time instance and let tCP be a
candidate change point as before between the reference and test intervals; that
is, trf + nrf − 1 < tCP < tte. Here, trf , tte are the time instances marking the
first observation in the reference and test intervals. To check whether Y te,j is
significantly different from Y rf,j , we state the hypothesis

H0 : p(Y rf,j) = prf (Y rf,j), trf ≤ t < tT vs.

H1 : p(Y rf,j) = prf (Y rf,j), trf ≤ t < tte,

p(Y te,j) = pte(Y te,j), tte ≤ t < tT ,

such that pte(Y te,j) > prf (Y rf,j).

(2.21)

The most natural test statistic to consider is the likelihood ratio between
the two probability distributions. The likelihood ratio between H1 and H0 is
given by

Λ =
Π
nrf

i=1prf (Y rf,j(i))Π
nte
i=1pte(Y te,j(i))

Π
nrf

i=1prf (Y rf,j(i))Π
nte
i=1prf (Y te,j(i))

=
Πnte
i=1pte(Y te,j(i))

Πnte
i=1prf (Y te,j(i))

. (2.22)

Note that the sum ranges over the observations from the test interval, which
means that the importance is computed at all test input sample points. Taking
the logarithm of the likelihood yields the test statistic

S = ln Λ =

nte∑

k=1

ln
pte(Y te,j(i))

prf (Y te,j(i))
. (2.23)

Now, the hypothesis (2.21) can be evaluated by using the previous statistic
and a threshold parameter µ:

{
If S ≤ µ −→ H0 cannot be rejected,

otherwise reject H0.
(2.24)

Remark : The hypothesis test (2.21) is a one-sided test. Since candidate change
points where an upward shift has occured are only considered, it is equivalent
to require that a potential candidate change point tCP satisfies Ŷ te,j > Ŷ rf,j .
That is, the observed mean of the test interval must exceed the observed mean
of the reference interval.

7Note that by computing the fraction w(x) =
pte(x)
prf (x)

, one does not know the individual

probability density functions prf and pte. However, by knowing prf , pte one can straight-
forwardly calculate pte

prf
. The rationale of density estimation is thus unidirectional.

15

What is left undetermined is the threshold parameter µ. It depends on the
length of the test and reference intervals and, most importantly, on the data
set. Before running KLIEP, the user must make sure to calibrate µ so that
the number of false rejections of H0 does not exceed the level of significance α.
Mathematically, we require

P (S > µ| H0) = α. (2.25)

In practice, it is required that this conditional probability holds only approx-
imately. The calibration is naturally excercised on stationary training data.

Note that it is of vital importance that (2.25) is fulfilled; otherwise the testing
of the hypothesis is likely to perform poorly. Applying KLIEP with calibration
with respect to (2.25) introduces automatically two main sources of errors that
will affect the performance of the final algorithm. Firstly, the data set must be
stationary under H0, i.e., full belief in H0 is required. If not, we erroneously
conduct a type III error. Secondly, the interval lengths nrf , nte must be chosen
appropriately. The more data points, the better the result after the calibration
phase.

2.7 A General Algorithm for Change Point Detection

We finish this section by stating a general algorithm for change point detection
that can be used in practice. The methods appearing in the algorithm have all
been described thoroughly in this section: the bootstrap, the stationary boot-
strap and the Kullback-Leibler Importance Estimation Procedure (KLIEP). In
the algorithm given on the following page (Algorithm 2.1), comments are marked
with a double slash (//).

16

Algorithm 2.1: An Algorithm for Change Point Detection(U , ... , µ)

Input : The set of all unit tests U , the set of unit test indices T , candidate change point
tCP , outlier type out type, level of significance α, interval lengths nrf , nte,
time instance trf ,number of bootstrap replications nboot, shift size ws,
minimum required length of a unit test dthr, threshold of minimum variability tthr,
outlier type out type, solution method do method
Optional : Change point detection threshold µ

main

for each t ∈ T
do // Perform a full pass through the unit test set

Uclean = clean data(U(t)) // Cleansed data set
Uclean = delete outliers(Uclean, out type) // Outlier adjusted data set
q = filtering(Uclean, dthr, tthr) // Returns either 0 (false) or 1 (true)
if do method == ’KLIEP’{
if µ unspecified // This parameter is optional
then µ = calibrate mu(Uclean, nrf , nte, trf , α)

if q > 0

if do method == ’do bootstrp’

Initialize Sn // Vector of bootstrap replicates
for n = 1 to nboot
do

if do method == ’std bootstrapfnc’
then Sn(n) = std bootstrap(Uclean, nrf , nte, trf , nboot)
else if do method == ’stry bootstrapfnc’
then Sn(n) = stry bootstrap(Uclean, nrf , nte, trf , nboot)

Compute lower and upper percentiles Slow, Sup from Sn given α
if Slow > 0 and Sup > 0

then

{
Reject H0

Signal potential change point tCP for unit test U(t)
else Accept H0

else if do method == ’KLIEP’

w = KLIEP(Uclean, nrf , nte) // w = (w(x1), ..., w(xnte
)); vector of weights

S =
∑nte

k=1 ln w(xk) // Compute test statistic
if S > µ

then

{
RejectH0

Signal potential change point tCP for unit test U(t)
else Accept H0

// Update time instances
tCP = tCP + ws
trf = trf + ws
tte = tte + ws

17

3 Results

3.1 Parameter Selection

This section provides the numerical results obtained from various simulations of
the three models. In the simulations, the same seed for random number genera-
tion was used in order to obtain a reliable comparison between the models. The
results presented here are based on type I and type II errors8. The performance
of the models can thus be inferred based on the type I and type II error curves.

Before proceeding, denote by X the stationary training data set:

X =

x11 x12 . . . x1n
x21 x22 . . .

...
...

. . .

xJ1 xJ2 . . . xJn

 ∈ MatJxn. (3.1)

Here, each element in X is an integer and n = 202, J = 50, 000. Since
this matrix contains dirty data and outliers, data pre-processing in form of data
cleansing and outlier deletion is executed prior to the analysis. We cannot write
down the resulting matrix because the length of a cleansed data series depends
on the number of 0 entries and how aggressively the outlier deletion process
is carried out. In the following, a data point is an outlier if condition (1.2) is
fulfilled for k = 1.5, i.e., only mild outliers are considered.

It should also be stressed that the cleansed unit tests must fulfill some addi-
tional requirements. Let dmin and tmin denote the threshold parameters mon-
itoring the minimum number of entries and unique entries that are required
for the analysis. A cleansed unit test qualifies for analysis if and only if the
minimum number of entries and unique entries in the resulting sequence exceed
the threshold values. In the following, fix dmin = 160 and tmin = 10.

If the previous requirements are met, the simulations run through 200 dif-
ferent unit tests sampled randomly from the pool of available unit tests. That
is, each unit test that is considered ”representative enough” is treated identi-
cally with the same weight. Because performance evaluation of the models is
restricted to type I and type II errors, simply take any point in a data set and
consider it as an i) ordinary point in the case of investigating type I errors, and
ii) a change point in the case of investigating type II errors.

In the following analyses, the number of bootstrap replicates nboot = 200 is
fixed in each resampling procedure. Moreover, KLIEP is always calibrated and
run with likelihood cross validation for optimal performance9.

8In statistical data analysis, the performance of a model can be evaluated by studying
type I and type II errors. The analyst determines the type I error threshold α based on the
severeness of conducting type I and type II errors.

9The user can always try to choose the kernel widhts appropriately, but the accuracy
of the method can only decrease; likelihood cross validation returns the optimal bandwidth
given the input reference and test data. Since the unit tests are sampled from characteristic
distributions, it is not recommendable to choose one global kernel width.

18

3.2 Type I Errors

We start by studying type I errors or false positive errors. Given full belief in
the null hypothesis, a type I error is defined as the fraction of false negatives
or incorrect rejections of H0 at the level of significance α. Recalling that each
unit test that passes the filtering stage is treated equally, the fraction of type I
errors for a given method and level of significance α is then given by

1 2 3 4 5
0

2

4

6

8

10

12

Interval Ratio (n
te

/ n
rf
)

F
ra

ct
io

n
of

 F
al

se
 P

os
iti

ve
s

(%
)

Type I Errors

Std Bootstrp (α = 5%)

Std Bootstrp (α = 1%)

Stry Bootstrp (α = 5%)

Stry Bootstrp (α = 1%)

KLIEP (α = 5%)

KLIEP (α = 1%)

Figure 3.1: Type I errors computed with respect to a purified stationary data set for
the standard bootstrap, stationary bootstrap and KLIEP as a function of the ratio
between the length of the test and reference intervals. The errors are plotted for two
choices of the level of significance, namely α = 5 % and α = 1 %, respectively.

Type I error :=
false rejections of H0

tests checked against H0
(3.2)

To avoid spurious notation, it is understood that the numerator and denom-
inator are counted conditionally on all tests that pass the filtering stage (other-
wise, the unit test is not hypothesis tested). To study the sensitivity of the type
I error under H0, it makes sense to study how the ratio between the test and
reference interval changes when the interval lengths are increased/decreased.
That is, we want to investigate how the fraction of false positives changes as the
interval ratio

nte
nrf
6= 1 (3.3)

19

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

Test Sample Factor of Increase K

F
ra

ct
io

n
of

 F
al

se
 N

eg
at

iv
es

 (
%

)

Type II Errors for Stationary Data Set

Std Bootstrap (1)

Std Bootstrap (2)

Stry Bootstrap (1)

Stry Bootstrap (2)

KLIEP (1)

KLIEP (2)

(1): n
rf
 = n

te
 = 50

(2): n
rf
 = 50; n

te
 = 100

Figure 3.2: Type II errors rates for a purified stationary data set plotted as a function
of the test interval factor of increase K for different combinations of the reference and
test interval lengths. The indicator (1) corresponds to the interval length combination
(nrf , nte) = (50, 50) whilst the indicator (2) corresponds to (nrf , nte) = (50, 100).
Here the level of significance α = 5 % is fixed.

changes by increasing nte and decreasing nrf iteratively by one unit. Hence,
the goal is to observe the type I error as a function of the fraction nte

nrf
given an

appropriate choice of α.
Consider the purified stationary data set obtained originally from X. Let

nte = nrf = 60 initially. Now, construct the sequences of interval lengths
{nte, nte + 1, ..., nte + 40} and {nrf , nrf − 1, ..., nrf − 40}. Then, for a given
ratio nte

nrf
, Figure 3.1 shows the type I error as a function of the ratio between

the test and sample interval lengthts for α = 1% and α = 5%, respectively.

3.3 Type II Errors

This subsection conducts studies on how type II errors vary for the standard
bootstrap, stationary bootstrap and KLIEP given both stationary and non-
stationary test data sets. Analogously, we start by defining a type II error as
the fraction

Type II error :=
false acceptances of H0

tests checked against H0
. (3.4)

20

0 50 100 150
0

5

10

15

20

25

M
ag

ni
tu

de

Time Instance

Time Series for Artificial Data Set (1)

Distr (1)

Distr (2)

Distr (3)

Distr (4)

Distr (5)

Figure 3.3: A realization of an artificial non-stationary process for Model (1) (⇐⇒
f = µt) for the data set defined by equation (3.6). The black zigzag line shows the
local mean of the process.

An easy and well-motivated approach for studying type II errors is to take the
given data series and multiply it by a constant factor K. In this way, the type II
error can be studied as a function of K for a given degree of significance α10. In
the following, K ranges from 1 by steps of 0.01 to 2, i.e., K = 1.00, 1.01, ..., 2.00
and if otherwise not stated, the constant K denotes the multiplying factor of
the entire test interval data sequence.

To begin with, consider type II errors for the purified stationary data set. We
would like to study how the type II error depends on K. For a given change point
tCP , we pick two combinations of the parameters nrf , nte, namely (nrf , nte) =
(50, 50) and (nrf , nte) = (50, 100) (that is, tCP is located somewhere between
the 50:th and 51:th entries in the data series). Then, for a fixed α = 0.05, the
fraction of type II errors as a function of K for each model under consideration
is given by Figure 3.2.

Next, consider two artificially generated data sets. The two data sets only
differ in terms of their individual variances. If Xt is an arbitrary non-stationary
stochastic process, then the variance can be modeled as

10For artificially generated data sets, only the mean value is affected by the multiplying
factor K. The magnitude of random fluctuations is kept constant.

21

1 1.1 1.2 1.3 1.4
0

20

40

60

80

100

Test Sample Factor of Increase K

F
ra

ct
io

n
of

 F
al

se
 N

eg
at

iv
es

 (
%

)

Type II Errors for Artificial Data Set (1)

Std Bootstrap (α = 5%)

Std Bootstrap (α = 1%)

Stry Bootstrp (α = 5%)

Stry Bootstrap (α = 1%)

KLIEP (α = 5%)

KLIEP (α = 1%)

Figure 3.4: Type II errors rates for a realization of the first artificial data set defined
by equation (3.6) (Model (1)) plotted as a function of the test interval factor of increase
K for (nrf , nte) = (60, 90). Here the level of significance is 1 % and 5 %, respectively.

V ar[Xt] = kf(µt) (3.5)

where k > 0 and f = f(µt) is any smooth, monotonically increasing function
singely depending on the mean level µt of the underlying process.

Consider next the following artificial data set where the reference and test
intervals are subject to three different normal distributions each for a general f :

Y rf (i) =

KµN +
√
f(µN)Z if i = 1, ..., nrf/3,

K(µN + 1.5) +
√
f(µN + 1.5)Z if i = nrf/3 + 1, ..., 2nrf/3,

K(µN + 2.5) +
√
f(µN + 2.5)Z if i = 2nrf/3 + 1, ..., nrf ,

Y te(i) =

K(µN + 2.5) +
√
f(µN + 2.5)Z if i = 1, ..., nte/3,

K(µN + 3) +
√
f(µN + 3)Z if i = nte/3 + 1, ..., 2nte/3,

K(µN + 3.5) +
√
f(µN + 3.5)Z if i = 2nte/3 + 1, ..., nte.

(3.6)

Here, Z ∈ N (0, 1), µN = 10 and nrf , nte denote the interval lengths as
before. This artificial data set was generated with a total of five different normal
distributions, one of which overlaps both intervals. The introduction of multiple

22

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

Test Sample Factor of Increase K

F
ra

ct
io

n
of

 F
al

se
 N

eg
at

iv
es

 (
%

)

Type II Errors for Artificial Data Set (2)

Std Bootstrp (α = 5%)

Stry Bootstrp (α = 5%)

KLIEP (α = 5%)

Std Bootstrp (α = 5%)

Stry Bootstrp (α = 5%)

KLIEP (α = 5%)

Figure 3.5: Type II errors rates for a realization of the second artificial data set
defined by equation (3.6) (Model (2)) plotted as a function of test interval factor of
increase K for (nrf , nte) = (60, 90). Here the level of significance is 1 % and 5 %,
respectively.

normal distributions in each time interval implies that Y rf ,Y te are two non-
stationarity data series, but nevertheless the data set does not exhibit a highly
non-stationary behaviour. The distributions were generated in a perturbative
manner with respect to the base mean level µN and the variance is proportional
to the mean according to (3.5).

The two models that are subject to (3.6) are now formed by choosing an
appropriate f . Let

f = f(µt) :=

{
µt (Model(1)),

µ2
t (Model (2)).

(3.7)

First consider the case where f = µt (Model (1)). Figure 3.3 shows a real-
ization of one data set generated with respect to the first artificial data set and
Figure 3.4 displays the type II (false negative) errors for different K given two
choices of the significance degree α (1 % and 5 %, respectively). The length of
the reference and test intervals were chosen as nrf = 60 and nte = 90.

Consider now the case where f(µt) := µ2
t (Model (2)). That is, instead of

the variance being proportional to the mean level, let the standard deviation
be. Injecting more randomness into the model while keeping the mean levels

23

constant in each subinterval [in the reference and test intervals] implies that
the models can be compared with additional noise. The type II error results
obtained from running a simulation with the same parameter settings but with
f = µ2

t yields the type II error curves found in Figure 3.5.

24

4 Discussion

4.1 Type I Errors

Two comments are in order for explaining the type I error curves obtained in the
previous section (Figure 3.1). First, the analysis is performed on a stationary
data set with real-world data which we assume defines the correct null hypoth-
esis; hence problems arising with non-stationarity is not an issue. Secondly, the
results from running a type I error analysis proved to be different for the values
of α that were chosen, namely α = 1% and α = 5% (Figure 3.2). In particular,
KLIEP did not reject H0 for any value of nte

nrf
given α = 1%, in contrast to the

bootstrap methods. On the other hand, it produced the largest number of false
positives at the level of significance 5 %.

The divergent results for KLIEP can partly be explained by the calibration
parameter µ. If the data set under calibration is not fully representative, then
µ is likely not to be optimally calibrated. Recall that a cleansing and out-
lier deletion process phase must be gone through for every unit test subject to
calibration with KLIEP, and that the choice of the cleansing parameters are
input-specific. With a low α, the parameter is likely chosen more accordingly,
which can be observed in Figure 3.2.

Another source of error is that the length of the reference interval becomes
very small since the change point is kept fixed when the lengths of the two
intervals are changed. Since each observation is integer-valued, this requires a
larger sample size than if the observations were drawn from a continuous proba-
bility distribution. This is actually one major justification for not applying the
median as the test statistic within the bootstrap change point detection frame-
work. Note that the possibility to detect changes using the median difference as
the test statistic is likely to reduce performance of the change point detection
algorithm since the data set contains integer data with potentially low varibil-
ity. Moreover, it is not clear why the observations have been rounded off to the
nearest integer. For accuracy reasons, it would be more sound to keep at least
three decimals.

4.2 Type II Errors

The results from the previous section show that the standard bootstrap method
handles stationary data and in particular non-stationary data sets surprisingly
well when the reference and test intervals differ in distribution. That is, the
standard bootstrap outperforms the stationary bootstrap and KLIEP with re-
spect to type II errors for both stationary and non-stationary data sets (Figure
3.2, Figure 3.4, and Figure 3.5). Although the standard bootstrap method is
based on indenpendently and identically distributed data, the simulation re-
sults show that the method is capable of identifying a potential change point
if the test interval differs significantly from the reference interval. Recall that
the respective artificially generated data sets are not highly non-stationary and
in addition, they are locally stationary in subintervals in the reference and test

25

intervals.
The stationary bootstrap performs slightly worse with respect to type II er-

rors. The main reason could be that the reference interval is relatively small and
that the the stochastic block sizes could have an impact on the performance. For
block resampling algorithms, the underlying sample size should be sufficiently
large so that the sample becomes representative.

Turning over to type II errors for KLIEP, it is without doubt that it is least
sensitive for detecting real changes in a data series. The type II error curves for
the stationary data set shown in Figure 3.2 do not approach zero as K tends to-
wards 2. This is in contrast to the type II errors for the standard and stationary
bootstrap methods, which approach zero for K ≈ 1.2 and K ≈ 1.5, respectively.
However, the situation is better given a realisation of the first artificial data set
(Model (1)) as shown in Figure 3.4, but the method still lags behind the boot-
strap methods. Adding randomness of squared the magnitude of the standard
deviation in Model (1) also worsens performance. In particular as K −→ 2, the
type II error for KLIEP with α = 1% has not yet approached zero.

If the goal is to minimize type II errors, a sound strategy would be to consider
the standard bootstrap method.

4.3 General Topics

Some comments should be made regarding the assumptions stated in subsection
1.2 and the choice of parameters. The most important assumption concerns the
belief in H0, which is based on the naive assumption of a completely stationary
training set. In reality, this is not entirely true; non-zero autocorrelations and
extreme values in the unit test samples occur to varying extent. Autocorre-
lation cannot be resolved, but outlier deletion is a user-controlled process and
requires reasonable judgement from the analyst. In this paper, we could be
more conservative regarding the threshold for determining whether a data point
is considered an outlier or not, but the results would probably be less represen-
tative with a less aggressive outlier threshold.

The assumption of independency between unit tests cannot be checked, since
one needs to examine the original code and check if it is actually true that
the unit tests are atomic. Moreover, it still remains unclear to what degree
non-stationarity affects the performance of the methods. The assumption of
approximate stationarity was made to motivate and justify the incorporation
of the models. Now, this assumption strongly relates to the lengths of the ref-
erence and test interval lengths. To enhance the approximation, the analyst
must know the daily measurement frequency and how often changes in the code
package are pushed from local systems to the main servers. Choosing nrf and
nte appropriately is vital for the accuracy of the algorithm.

Above we touched the issues regarding contaminated data. This is one large
source of error, since the type I and type II errors depend on how effectively
non-representative tests are filtered out. Once passed the filtering stage, each
unit test is treated identically and with the same weight. Another, at least as
important error source is the relatively small amount of unit test data that was

26

used. After data cleansing and outlier elimination, the size of each test must
exceed the threshold value of 160 observations. This is not much data. More
data had without doubt produced more accurate results. In particular, the out-
lier elimination procedure would be more accurate.

The approach to change point detection taken in this paper does come with
a few complications. Applying a bootstrap technique to non-stationary time
series is of course risky; neverthelss, the bootstrap proved to perform well on
the artificial data sets. Moreover, time dependency was not taken into account
in the KLIEP algorithm. Incorporating local time dependency was actually at-
tempted, but the results did not look promising and hence the approach was
abandoned. The extension of the change point algorithm using KLIEP taking
local time dependency into account is implemented by treating each observa-
tion in a given time interval as a vector of k components. This yields a Hankel
matrix of size k × n, where n is the number of observations in the given time
interval.

It should also be noted that KLIEP was originally invented as an offline
batch processing algorithm. An online version has been proposed by Sugiyama
et al., but it requires partly that ones picks an appropriate value of the forget-
ting factor. Another, more recent algorithm developed by Sugiyama and one
of his PhD students can be found in the bibliographic section ([8]). The paper
proposes a method based on relative density ratio estimation using the relative
Pearson divergence measure. Their method could e.g. be applied to this prob-
lem as a continuation of the current work.

The missing part in this project was a data set with potentially non-stationary
properties that could be used for validation11. Now the artificial data sets were
generated for this purpose, but they were generated using different normal dis-
tributions; hence the performance of the algorithms was measured with respect
to a parametric model when in reality observations might come from a distri-
bution that has no closed form. In conclusion, investigating algorithms with
known change points from any non-stationary time series data set could be a
natural continuation of the current work when more data becomes available.

At last, the models used in this paper constitute only a small subset of the
many approaches to change point detection. However, the limiting factor in
many papers is the use of parametric models. The problem of finding an ef-
fective global change point detection algorithm needs a robust non-parametric
algorithm that does not assume that data follows a certain probability model,
nor that it requires the user to possess knowledge about specific input param-
eters. Our results, based on two bootstrap methods and a density ratio esti-
mation model, indicate that the algorithms work as desired and with relatively
promising results. However, one could as an alternative attempt non-parametric
predictive modeling or perhaps a state-space model such as the Kalman fil-
ter. Nervertheless, these approaches would require careful pre-analysis so that
knowledge about how to overcome their individual problems is known a priori.

11Such a data set with known change points could therefore be used to ”stress test” the
algorithms without the need for artificial data sets.

27

5 Conclusion

Robust performance measurement in large code packages is a challenge tech
companies are faced with today. The standard way of measuring performance
in code is to run many independent atomic tests, unit tests, measure the execu-
tion time of each such test and store the results in a database. The fundamental
problem that arises is whether a significant (statistically speaking) increase in
observed execution time for a given unit test has occured or not. In literature,
this problem is called change point detection and is the subject of this study.

This paper proposes three models to approach non-parametric change point
detection in time series data. The main idea is to partition a data sequence
(sampled from any unit test) into two consecutive time intervals, where the
intermediate point is a candidate change point. A change point is defined as
a point where the statistical properties of a distribution changes. The null
hypothesis thus reads that no change has occured, in contrast to the alterna-
tive hypothesis stating that an upward shift in the mean level of the reference
distribution has occured. When a model has been selected, an appropriate test
statistic is chosen and defined over both intervals to test whether a significant in-
crease in observed execution time has occured or not. Two of the three methods,
the standard bootstrap and the stationary bootstrap, use statistical resampling
to infer about whether the mean difference between the two time intervals is
larger than zero. The third method, Kullback-Leibler Importance Estimation
Procedure (KLIEP), estimates the density ratio between the test and reference
time interval without going through direct (naive) density estimation. The test
statistic used for KLIEP is based on the log likelihood ratio between the two
distributions and tests whether the mean difference (larger than zero) is signif-
icant.

The performance of the three methods has been tested on a stationary train-
ing data set and on two artificially generated non-stationary data sets. It was
found that all models satisfy the null hypothesis for a stationary data set up
to a pre-specified error tolerance α. However, when the interval lengths are
changed such that the test interval becomes larger than the reference interval,
all models tend to invalidate the null hypothesis when the ratio between the in-
terval lengths exceeds a model specific threshold. In particular, this behaviour
is observed for all models if the level of significance α = 5%. By contrast if
α = 1%, KLIEP proved to not reject the null hypothesis a single time whilst
the bootstrap methods violated the null hypothesis when the respective ratios
exceeded certain threshold values. Finally, a comparison between type II errors
was conducted. The standard bootstrap was then shown to minimize type II
errors for both the stationary data set and the non-stationary data sets, pro-
ceeding the standard bootstrap and KLIEP.

Whether one model is to be preferred against another depends on the toler-
ated fraction of type I and type II errors that is acceptable for the application
and by human subjectiveness. The standard bootstrap method, however, turned
out to work surprisingly well in the performance tests.

28

References

[1] Y. Kawahara, M. Sugiyama. Change-Point Detection in Time-Series Data
by Direct Density-Ratio Estimation, 2009 SIAM Int’l Conf. on Data Mining
(SDM 09), pp. 389-400, Nugget Avenue Sparks, NV.

[2] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. v. Bunau, M. Kawan-
abe. Direct Importance Estimation for Covariate Shift Adaptation, Annals
of the Institute of Statistical Mathematics, vol 60, no .4, pp. 699-746, 2008.

[3] E. Acua and C. Rodriguez. On Detection of Outliers and Their Effect in
Supervised Classification.

[4] K. Singh and M. Xie. Bootstrap: A Statistical Method.

[5] E. Paparoditis and D. N. Politis. Local Block Bootstrap, C. R. Acad. Sci.
Paris, Ser. I 335 (2002) 959-962.

[6] D. N. Politis and J. P. Romano. The Stationary Bootstrap (1994), Journal
of the American Statistical Association, 89, pp. 1303-1313.

[7] Kunsch, H.R. (1989), The Jackknife and the Bootstrap for General Station-
ary Observations, Annals of Statistics, 17, 1217-1241.

[8] S. Liu, M. Yamada, N. Collier, M. Sugiyama. Change-Point Detection in
Time-Series Data by Relative Density-Ratio Estimation, Journal Neural
Networks archive Volume 43, July, 2013 pp 72-83.

29

