
Department of

Information Technology

Box 337

SE-751 05 Uppsala

Sweden

Mesh Merging
Introduction

A surface mesh can be used to enclose a volume. If

two volumes, enclosed by two meshes, overlaps a

mesh for the combined volume can be desired to

find. This mesh is found by merging the two meshes.

Method

The algorithm for merging two meshes can shortly be

described as:

• Find the intersecting triangles from the two

meshes.

• Extract a boundary for each mesh from the

intersecting triangles.

• Connect the two boundaries by triangles.

• Assemble the final mesh.

With this approach there are two crucial points, the

speed for finding the intersecting triangles and how

the two boundaries are connected. The execution

time for merging two meshes are almost exclusively

determined by the time it takes two find the

intersecting triangles.

The naïve way for finding intersecting triangles from

mesh A is to test wither all the triangles one by one

against all the triangles in mesh B. To reduce the

number of triangle-triangle-intersection tests some

geometrical properties are used. Among other things

a center point and a radius for each mesh are

computed, where the radius is defined as the largest

distance from any vertex in the mesh to the center

point of that mesh. If a triangle from mesh A lies

further away from the center point of mesh B than the

radius of mesh B, then this triangle from mesh A can

not intersect with any triangle from mesh B.

The only new triangles created are the ones

generated when connecting the two boundaries. The

rest of the triangles are taken from the two meshes

that are to be merged. This means that the quality of

the mesh is only dependent on the previous meshes

and the connecting triangles. Hence the importance

of this step.

If the two boundaries are of different length the short

one is interpolated. In order for the final mesh to be a

correct surface mesh two vertices lying next to each

other on the boundary has to take part in a triangle

together. When connecting these boundaries one

boundary is chosen as a base (A). Then the triangles

are created by finding the vertex at boundary B that

makes the best triangle with the two vertices from

boundary A. This is performed for all the pairs of

vertices on boundary A, the rest of the triangles are

found by filling the holes not yet covered by triangles.

Result and Discussion

If the two meshes shown in Figure 1 are merged the

resulting mesh will be the one presented in Figure 3.

The connecting triangles between the two boundaries

are shown in Figure 2. The execution time for this

merge is shown in Table 1, with execution time for an

other merge as well. For the two merges the meshes

have the same shape but the resolution of the

meshes differ.

Since the shape of the triangles in Figure 2 looks

good the quality of the merge is considered to be

fine. However, it would be desirable with a faster

execution, since the algorithm has to be able to

handle meshes with many more triangles. One

solution for this is to parallelize the algorithm,

preferably on GPU. The algorithm also has to be

generalized in order to handle cases when the

intersection between the two meshes are more

complex, leading to several of boundaries for each

mesh.

Author:

Fredrik Viström

frvi.4047@student.uu.se

Supervisors:

Nader Salman, Schlumberger

Bjarte Dysvik, Schlumberger

Maya Neytcheva, Uppsala University

Figure 1: The two meshes that are merged together, one mesh shown in red

and one in blue.

Figure 2: The triangles connecting the two boundaries.

Figure 3: The resulting, merged mesh.

Number of triangles

(mesh A × mesh B)

Time for finding

intersecting triangles

(ms)

Tota time for execution

(ms)

764 × 760 236 246

19 580 × 19 568 129 729 129 863

Table 1: Execution times for two merges.

