
Department of Information Technology

Mesh Merging:

for 3D triangular surface meshes

Fredrik Vistr�om

Project in Computational Science: Report

January 2014

P
R
O
J
E
C
T
R
E
P
O
R
T

Abstract

An algorithm for merging 3D triangular surface meshes is presented.
The algorithm is based on a few key steps; finding the intersecting
triangles, extracting boundary polygons, connecting boundary
polygons and merge the pre-processed meshes. The algorithm
shows promising results regarding the quality of the merging, but
it can not handle all types of intersection. Future work would
be generalizing the algorithm, validating and testing it more and
parallelize the implementation.

Contents

Introduction 1

Method 1
Finding Intersecting Triangles . 2
Finding Boundary Polygons . 4
Connecting Boundary Polygons . 5
Merging the pre-processed meshes . 7

Result and Discussion 8

Conclusion 11

Introduction

A mesh is a set of vertices and connections between them. The meshes that have been
used throughout this report are 3D triangular surface meshes, i.e. the vertices are points
in 3D space (three coordinates) and the vertices are connected to form triangles. All the
vertices are connected into triangles, whose union forms a closed surface, i.e. a volume is
enclosed by the mesh. From here on a 3D triangular surface mesh will simply be refereed
to as mesh. An example of such a mesh is presented in Figure 1.

Figure 1: A 3D triangular surface mesh.

If there are two meshes, MA and MB, enclosing two different volumes, VA and VB,
respectively, then the case can be that VA and VB are intersecting. This means that
MA and MB are intersecting with each other as well. It can then be desired to create
a new mesh, for the union of the two volumes. This can be performed by merging
the two meshes into a mesh MM such that the volume enclosed by MM is VM , where
VM = VA ∪ VB. An example of two intersecting meshes is presented in Figure 2, where
MA is shown in red and MB in blue.

Method

Given two meshes MA and MB with vertices vAi and vBj , for i = 0, 1, ..., NA
v − 1 and

j = 0, 1, ..., NB
v −1, and triangles tAi and tBj , for i = 0, 1, ..., NA

t −1 and j = 0, 1, ..., NB
t −1,

respectively. Where NA
v , N

B
v , N

A
t and NB

t are respectively the number of vertices and
triangles in MA and MB. The algorithm for merging the two meshes, into one mesh MM ,
can be summarized in the following steps:

� Find the intersecting triangles from the two meshes.

� Extract a boundary polygon for each mesh from the intersecting triangles.

1

Figure 2: Two intersecting meshes, MA shown in red and MB in blue.

� Connect the two boundary polygons with triangles.

� Merge the pre-processed meshes.

This means that this algorithm is limited to the cases where there is one single intersection
region, such that there is only one boundary polygon for each mesh. In order to handle all
types of intersection the algorithm has to be generalized such that several boundaries for
each mesh can be generated and then connecting the correct boundaries with each other.

Finding Intersecting Triangles

If a triangle from MA intersects with any triangle from MB, then it is an intersecting
triangle from MA. In order to find all the intersecting triangles from MA the naive way
is to test every triangle in MA against all the triangles in MB. The complexity of the
naive way is NA

t · NB
t , hence it will not scale well for meshes with a large number of

triangles. In order to reduce the number of triangle-triangle intersection tests some other,
cheaper, tests can be performed to see if a triangle-triangle intersection test is unnecessary.

A center point for MA, defined by

cA =

∑NA
v −1

i=0 vAi
NA

v

, (1)

can be computed and used in order to define a sphere, SA
R , that contains the entire MA.

This sphere will have the center point cA and a radius RA, where

RA = max
i

dist(vAi , cA) (2)

2

and dist(vAi , cA) is the Euclidean distance between vAi and cA. A second sphere, SA
r , can

also be defined, that has the same center point but a different radius, defined by

rA = min
i

dist(vAi , cA). (3)

The sphere is defined in a such a way that no triangles from MA will lie inside SA
r .

Besides these two spheres the longest edge, lA, in MA is found. The longest edge means
the maximum distance between any two vertices contained in the same triangle from MA,
that is

lA = max
i

(
max

vn,vm∈tAi
dist(vn, vm)

)
. (4)

The values computed in Equation (1)-(4) for MA are also computed for MB. From these
mesh data some tests can be defined in order to reduce the number of triangle-triangle
intersection tests. If a triangle, tAi , from MA lies outside the sphere SB

R it means that
tAi can not intersect with any triangle from MB. This means that all triangle-triangle
intersection tests between tAi and any triangle from MB can be skipped. A similar
argument for triangles from MA that lies inside SB

r allows these triangle-triangle
intersection tests to be skipped as well.

If a triangle tAi can not be rejected as a intersecting triangle by any of the two
tests defined above it has to be tested whether it intersects with any triangle from
MB. However, a full triangle-triangle intersection test can still be avoided for some
of the triangles from MB. If the distance between tAi and tBj is too large, then the
triangles can not intersect. Instead of calculating all possible distances between all
vertices in tAi and tBj only one distance is calculated. If the distance between vn and vm
is larger than lA+lB, it means that tAi and tBj can not intersect, where vn ∈ tAi and vm ∈ tBj .

The triangle-triangle intersection test used here is presented by Tomas Möller [1].
The principle of the method will here be described shortly, for a more detailed
explanation the reader is referred to the article. For determining whether two triangles,
tA and tB, intersect the equations for the corresponding planes πA and πB are computed,
where tA ∈ πA and tB ∈ πB. Then the signed distances from the vertices of tA to πB
are computed. The signed distance means that that the sign will positive on one side of
the plane, and negative on the other side. The positive side will be the side in which the
normal to the plane is pointing. If the signs of these three signed distances are the same
it means that tA lies on one side of πB and that they do not intersect, hence does not
tA and tB either. The same computations are then made for tB and πA. If the special
case when the two planes are co-planar is rejected, then the intersection of πA and πB is
a line L. Moreover, the triangles tA and tB will intersect with L, as the cases when they
don’t are already rejected. The intersection of tA and L will be an interval on L, and
the same goes for tB. If these two interval on L overlaps, it means that tA and tB intersect.

The intersecting triangles from the meshes shown in Figure 2 are presented in
Figure 3. In this example the red triangles come from MA and the blue ones from MB.

3

Figure 3: Intersecting triangles from MA (red) and MB (blue).

Finding Boundary Polygons

Due to the fact that MA and MB are surface meshes the intersecting triangles from
MA and MB will both form a closed chain of triangles, meaning that all triangles share
at least one edge with an other intersecting triangle. The special case is when a mesh
only has one intersecting triangle, then the boundary polygon will be a list of the three
vertices in that triangle. This further means that the intersecting triangles from MA will
form a surface SA that works as a boundary between the triangles in MA that lie outside
MB and the ones that lie inside MB.

It is not a boundary of intersecting triangles that are sought after, but a boundary
polygon. A boundary polygon is a closed chain of vertices. In order to extract a boundary
polygon from the intersecting triangles all the edges from the intersecting triangles are
stored. Each edge is stored once per triangle, meaning that a shared edge will be stored
twice. The edges that are stored only once will form the boundary of SA and the edges
that are stored twice will lie in the interior of SA. However, SA will have two boundary
polygons, one that lies inside MB and one that lies outside MB. The boundary polygon
that lies outside MB is the boundary polygon that is sought after. In order to determine
which boundary polygon that lies outside MB it is sufficient to check one vertex from one
of the two boundary polygons. If this vertex lies outside MB, than the entire boundary
polygon does too. Otherwise, the entire boundary polygon lies inside MB and it is the
other boundary polygon that are sought after.

In order to determine whether a vertex lies inside a mesh a ray is cast from the
vertex in any direction. Then the number of times the ray traverses through a triangle
is counted. If it occurs an odd number of times, then the vertex lies inside the mesh,
otherwise outside. To determine whether a ray and a triangle intersect or not a method
presented by Thomas Möller and Ben Trumbdore [2] is used. The method is based on

4

determining the Barycentric coordinates (u, v) (related to the triangle) for the point
where the ray intersects with the plane in which the triangle lies and the signed distance,
dt, between the vertex and the plane. If the ray and the triangle intersect, then

u ≥ 0,

v ≥ 0,

u+ v ≤ 1,

dt ≥ 0.

(5)

An important thing to remember is that the vertices of the boundary polygon are
a subset of the mesh vertices and that the original indexing among the vertices has no
impact on the order they appear in the boundary polygon. The boundary polygons from
the example shown in this report are presented in Figure 4.

Figure 4: Boundary polygons, BA shown in red and BB in blue.

Connecting Boundary Polygons

From the intersecting triangles from MA and MB the boundary polygons BA and BB

are extracted. BA is a list of NA
B vertices, where a vertex from BA is denoted by vAB,i.

The vertices vAB,i and vAB,i+1 are connected, for i = 0, 1, ..., NA
B − 2, and vertex vAB,0 and

vA
B,NA

B−1
as well. The same goes for BB. These boundary polygons are then connected by

forming triangles, referred to as boundary triangles, between them in such a way that a
single surface is formed, with boundaries BA and BB. This is performed by assuring three
things:

� A boundary triangle takes two vertices from one of the boundary polygons and one
from the other boundary polygon.

5

� Two adjacent vertices on a boundary polygon must also be connected in exactly one
boundary triangle.

� Two non adjacent vertices from a boundary polygon can not be connected in any
boundary triangle.

If BA and BB are of different length, NA
B 6= NB

B , then the shorter one is interpolated until
NA

B = NB
B . If NA

B < NB
B , then the two vertices vAB,i and vAB,i+1 (or vAB,0 and vA

B,NA
B−1

)

with the greatest distance between them are found and a new vertex is inserted between
them. When a new vertex vnew is inserted between vn and vm the triangles with both
vn and vm must be split into two new triangles. This means that a triangle with the
vertices {vn, vm, vo} will be split into two new triangles with the vertices {vn, vo, vnew}
and {vm, vo, vnew} respectively.

When connecting BA and BB, one of the boundary polygons is chosen as a base
for the algorithm, i.e they are not treated in the same way. This means that there is
a difference between connect(BA, BB) and connect(BB, BA), where connect(B1, B2) is
the algorithm for connecting boundary B1 and B2 with B1 as the base. Below is the
algorithm described with BA as the base boundary polygon.

The first step in connecting BA and BB is to find the vertex vBB,b that satisfies

min
j

(
dist(vAB,i, v

B
B,j)

2 + dist(vAB,i+1, v
B
B,j)

2
)
, (6)

for i = 0. The subscript b in vBB,b is used to denote that this vertex will form a bound

when connecting the boundary polygons. The three vertices {vAB,0, v
A
B,1, v

B
B,b} will form

the first triangle. The next step is to find the vertex from BB that satisfies Equation (6)
for i = 1. This vertex will be denoted by vBB,k and the three vertices {vAB,1, v

A
B,2, v

B
B,k}

will form the second triangle. If vBB,k = vBB,b, v
B
B,k is updated by taking the vertex that

satisfies Equation (6) for i = 2. The procedure is repeated with for an increasing i until
vBB,k 6= vBB,b. When this occur there is four possible cases:

(a) k > b and k − b ≤
NB

B

2
,

(b) k > b and k − b >
NB

B

2
,

(c) k < b and b− k ≤
NB

B

2
,

(d) k < b and b− k >
NB

B

2
.

(7)

From these cases a direction of movement is defined. The direction of movement can be
either increasing or decreasing. What it specifies is how one should step in BB to get
from b to k, along the shortest path. This means that even if k < b it might be better
to move in an increasing direction from b and jump from NB

B − 1 to 0 before further
increasing from 0 to k. Likewise for a decreasing direction when k > b. This leads to an
increasing direction for case (a) and (d), in Equation (7), and a decreasing direction for
case (b) and (c).

6

In order to fulfill the three statements, mentioned earlier in the bullet list, for
assuring that the boundary polygons are connected in a admissible way the vertices that
lie between vBB,b and vBB,k have to be connected to vAB,i, where i is the highest index

used so far in Equation (6), i.e. the index that led to vBB,k 6= vBB,b. These triangles are

{vAB,i, v
B
B,j , v

B
B,j±1}, for j = b, b± 1, ..., k ∓ 1, with the sign determined by the direction of

movement. The set of indexes b± 1, ..., k ∓ 1 is denoted by I.

The same procedure as described in the two last paragraphs is then repeated, in a
slightly modified way. Once again the three statements for assuring an admissible
connection between the two boundary polygons come in to play. Equation (6) is solved
with j restricted to j /∈ I for increasing i until a new k is found such that vBB,knew

6= vBB,kold
,

where kold refers to the previous k. Triangles are generated during this iteration as
for the first triangles. And when knew is found such that the stopping condition is
fulfilled the triangles {vAB,i, v

B
B,j , v

B
B,j±1}, for j = kold, kold ± 1, ..., knew ∓ 1, are formed

and the indexes kold, kold ± 1, ..., knew ∓ 1 are added to I. This iteration is stopped when
i > NA

B −1. In the last iteration, i = NA
B −1, the index i+1 in Equation (6) is replaced by

index 0. In each iteration knew is updated and kold will be knew from the previous iteration.

The last step when connecting the boundary polygons is to generate the triangles
{vAB,0, v

B
B,j , v

B
B,j±1}, for j = knew, knew ± 1, ..., b ∓ 1. No triangles are needed to be

generated if knew = b. The boundary triangles for the example followed in this report are
presented in Figure 5.

Figure 5: Boundary triangles.

Merging the pre-processed meshes

In order to get a complete mesh, among the already found boundary triangles, only
some of the triangles from MA and some of the triangles from MB are used. Which

7

triangles to use from MA and MB are determined when the intersecting triangles from
the corresponding mesh is found. The triangles to use from MA are the ones that lie
outside MB, and the triangles to use from MB are the ones that lie outside MA.

If a triangle from MA lies outside SB
R it is no longer a possible intersecting triangle,

moreover it is then also known that it lies outside MB and that it should be used in the
merged mesh. Furthermore, we utilize that a triangles from MA that lies inside SB

R also
lies inside MB and that it should not be used in the MM . If the triangle is an intersecting
triangle it should not be used either. If the triangle does not fulfill any of the condition
mentioned above it has to be tested specifically if it lies outside MB or not. This is done
by testing one of the vertices in the triangle and see if this vertex lies inside or outside
MB.

Result and Discussion

The algorithm for merging two meshes presented above has been implemented and tested
in C#. Merging two meshes can be performed in several ways, affecting both the outcome
mesh and the speed of the algorithm. Visual inspection has been used to qualitatively
assess the output merged meshes, because there is not any efficient way for mathematically
determine the quality of a mesh. During the visual inspection aspects that has been
taken into account are the shape of the boundary triangles, they should preferably
not differ to much from an equilateral triangle, and a vertex should not take part in
too many boundary triangles. For the visualization of the meshes MATLAB has been used.

The implementation reads the two meshes from file and writes the merged mesh to
its own file. If two meshes are given that do not intersect, the outcome is an empty file.
This can be determined immediately after finding the intersecting triangles, because there
will be no intersecting triangles. When measuring the execution times, the code was run
on an Intel Core i5-3570K CPU @3.40 GHz processor and 8.00 GB RAM, running a
64-bit Windows 7 operating system. The implementation has not been parallelized, so it
has only been running on one core.

In the example previously presented in this report the intersection between the
two meshes is to be considered as deep. Besides this deep intersection other types of
intersections have also been studied, namely a shallow intersection and a merge between
two meshes without any intersection. The merged mesh for the deep intersection is
presented in Figure 6, while the two meshes with shallow intersection and no intersection
are presented in Figure 7 and Figure 8 respectively.

Besides the type of intersection between the meshes the number of triangles in the
meshes has also been varied in the tests. In the meshes seen in Figure 2, 7 and 8 the
number of triangles are around 750 for each mesh. Meshes with the same shape as in
the three example given here but with around 20 000 triangles in each mesh have also
been studied. The impact of the optimizations presented for reducing the number of
triangle-triangle intersection tests have also been analyzed.

Execution times for several types of merges are presented in Table 1, where Tit is
the time for finding the intersecting triangles and Tt is the total execution time, from
which several conclusions can be drawn. First of all, one can see that the largest part of

8

Figure 6: The resulting mesh for merging the meshes MA and MB from the example in this
report.

Figure 7: Two meshes with shallow intersection.

9

Figure 8: The meshes without any intersection.

the total execution time, in all cases, comes from finding the intersecting triangles. This
means that any optimization for speeding up the algorithm should be focused on the
part where the intersecting triangles are found, as it has been. When the optimizations
have been used the execution time has been drastically reduced. It is also seen that the
impact of the optimizations heavily dependent on the type of intersection the merging
is performed on. If there is no intersection between the meshes to merge the impact is
huge, but there is also a good performance boost for the deep intersection.

As stated earlier, the complexity of the naive way for finding the intersecting triangles
is NA

t · NB
t . This can also be seen from the execution times for the merge with deep

intersection and no optimizations. The ratio between the number of triangles in the two
cases is

19 580 · 19 568

764 · 760
≈ 660, (8)

and the ratio for the execution times is

392 682

613
≈ 641. (9)

If the values from Equation (8) and (9) are compared one can see that the performance
is slightly better than expected. This is due to the optimizations in the triangle-triangle
intersection test itself. If one instead would look at the case when optimizations have been
used the ratio between the execution times will be

129 729

234
≈ 554. (10)

It is then seen that the complexity for finding the intersecting triangles are reduced when
optimizations are used, since 554 < 641.

10

Table 1: Execution times for merging meshes with different types of intersection, different sizes
and whether to use optimizations or not.

Intersection Optimization NA
t ×NB

t Tit (ms) Tt (ms)

deep yes 764 × 760 234 244
deep no 764 × 760 613 623
deep yes 19 580 × 19 568 129 729 129 863
deep no 19 580 × 19 568 392 682 392 812

shallow yes 764 × 764 99 106
shallow no 764 × 764 625 632
shallow yes 19 580 × 19 636 56 617 56 693
shallow no 19 580 × 19 636 397 794 397 870

none yes 764 × 544 7 7
none no 764 × 544 449 449
none yes 19 580 × 13 546 2 686 2 686
none no 19 580 × 13 546 273 864 273 864

Conclusion

The algorithm shows promising results regarding the quality of the merging, but it is
limited to the cases where there is only one intersection region. Some optimizations have
been implemented in order to increase the speed of the algorithm, as it is a limiting factor
for the algorithm to handle meshes with a large number of triangles. The next step for
speeding up the execution would be to parallelize the implementation, in particular the
part for finding the intersecting triangles. Further testing for validating the quality of the
merged mesh is needed, as well as a generalization of the algorithm to handle all types of
intersection.

11

References

[1] T. Möller. A fast triangle-triangle intersection test. Journal of Graphics Tools,
2(2):25–30, 1997.

[2] T. Möller and B. Trumbore. Fast, minimum storage ray-triangle intersection. Journal
of Graphics Tools, 2(1):21–28, 1997.

Acknowledges

I would like to thank Nader Salman at Schlumberger for the help I have gotten during
this project, such as the project itself, test data and guidance. I would also thank
Maya Neytcheva as Uppsala University for hosting an interesting project course, where
this project has been taken place, with instructive seminars about oral presentation and
posters.

13

