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Abstract 

Three different hybrid methods using explicit time steps are used for simulation of 
stochastic-deterministic models for the biochemistry in cells. They were compared by 
investigating their accuracy in different systems. The methods are the Euler forward 
method, the Lie-Trotter method and the Strang method, and they are used to simulate 
three different model systems: a simple example with two chemical species (irreversible 
heterodimerization), metabolites controlled by enzymes and the circadian rhythm.  

The results showed that the Strang method seemed to be the best among all tested 
approaches. The Lie-Trotter method did not behave as expected and more research on 
that needs to be done. The value of the parameter coupling the species in the simple 
example had a great impact on the error, while changing parameters which only affects 
one of the species directly had a smaller impact.  
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1 Introduction 

Each cell has a complicated biochemical network where chemical species move in space by 

diffusion, and react with each other to form new compounds. One cell may consist of many 

different chemical species and the modelling of the reactions between them is therefore very 

complex [1].  The massive acquisition of data in molecular and cellular biology has made it 

possible to use computational simulations of biological systems. Computational simulations 

are very important in the work to understand and predict quantitative behaviour of complex 

biological systems [2]. 

1.1 Models for biochemical reactions 

Most computational models for the biochemical reactions in cells are based on the 

deterministic reaction rate equations that form a system of ordinary differential equations 

(ODEs) [3] [4]. This is a popular approximation of the mechanisms how the concentrations of 

species change in a well-mixed system. Each equation in the set typically represents the rate 

of change of a species' continuous concentration [1] [2] [4]. The underlying assumption is that 

the medium in which the reactions take place is spatially homogeneous and that the process is 

isothermal and isometric [4].   

This deterministic approach is best suited to capturing the behaviour of systems where species 

are abundant and reaction events frequent. In that case the species concentrations are 

acceptably approximated as varying continuously and predictably [2]. When this is met, the 

deterministic approach is a powerful tool in the understanding of the dynamical behaviour of 

the chemical system [5]. 

However, molecular interactions are intrinsically random and cellular behaviour itself seems 

to reflect this randomness [2]. In living cells the number of molecules of the chemically active 

species such as proteins is often low [1]. Species that only exist in low copy number are 

subject to random fluctuations which cannot be neglected, and in many cases these 

fluctuations have a great impact on the behaviour of the system [5]. Examples of this kind of 

system can be found in gene regulation. Liu and Jia [7] have shown that noise plays important 

role in the genetic regulatory switch processes. When a gene controls its own expression, a 

simple model consists of a single gene transcribed to mRNA which in turn is translated to a 

transcription factor regulating the gene [4]. Typically the genes are present in one or two 
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copies and the copy number of mRNA is small [1]. Owing to such small numbers, the 

transcription is rather a stochastic than a deterministic process [5] [6]. 

A stochastic process approach can identify key physiological control parameters to which the 

behaviour of specific genetic regulatory systems is particularly sensitive [7]. One way to 

model coupled chemical reactions stochastically is to use the Stochastic Simulation Algorithm 

(SSA) introduced by Gillespie in 1976 [8].  The SSA is an exact method for numerically 

calculating the time evolution of any spatially homogeneous mixture of molecular species 

which interact through a specified set of coupled chemical reaction channels [8].   

The SSA yields a correct realization of the process in the cell. However, computational 

complexity increases compared to the reaction rate equations [6]. Most systems are not 

analytically tractable, and the only way to analyse such processes is to simulate individual 

trajectories. If the number of reactions is large or if some molecular species appear in large 

numbers numerical computations become very time consuming [5].  

In networks with many reactions or with reactants occurring in high numbers, the SSA 

becomes inefficient. On the other hand, small numbers of some of the members of a genetic 

network often makes an approximation by a purely deterministic approach inaccurate [5]. To 

be able to simulate realistic chemical reactions, without the computational complexity 

associated with SSA, the hybrid method is introduced [6].  

The idea behind the hybrid method is to split the set of species Z  into two sets Z → (X, Y). 

The species with low statistical variation (Y) are well represented by their mean values, and 

can be approximated by equations related to the reaction rate equations. The species with low 

copy number or large variation (X) are treated stochastically and need to be simulated with the 

SSA [6]. The stochastic set (X) and the deterministic set (Y) are simulated separately but are 

synchronized at some time 𝑡 determined by a time stepping method. 

1.2 Project definition  

The aim of this project is to compare different methods for time stepping in the hybrid method 

by investigating their accuracy in different systems. Three different methods for time stepping 

are investigated: the well-known Euler forward method and two methods using operator 

splitting: due to Lie-Trotter and Strang. The methods chosen are not unique for stochastic-

deterministic splitting but can also be used in different situations. 
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To analyse and compare the different methods they are used to simulate a simple example 

with two chemical species (irreversible heterodimerization). Selected methods are then used 

to simulate metabolites controlled by enzymes and the circadian rhythm. Each system will be 

described in detail in Section 3.  

To measure accuracy, a reference solution is computed with the Piecewise Deterministic 

Markov Process (PDMP). The solution obtained from PDMP is chosen as a reference solution 

since it has the same stochastic-deterministic splitting as the other methods and gives an exact 

realization of the hybrid system. Therefore the other methods are expected to converge to the 

result of the PDMP method as the time step goes to zero. PDMP is described closer in Section 

2.3 . 

2 Method 

In the following section the three time stepping methods and the method for calculating the 

reference solution are described. 

2.1 Hybrid method 

A chemical system with 𝑁  molecular species  Z𝑖, 𝑖 = 1, … ,𝑁 , is characterised by the state 

vector 𝒛 ∈ ℤ+𝑁. The component 𝑧𝑖  is the number of molecules of Z𝑖  [4].  A reaction 𝑟,  𝑟 =

1, … ,𝑅 in the system is a transition from a state 𝒛𝒓 to 𝒛 so that 𝒛𝒓 = 𝒛 + 𝒏𝒓, where 𝒏𝒓 ∈ ℤ𝑁 is 

the state-change vector. The probability that a reaction 𝑟  occur per unit time is the non-

negative propensity 𝑤𝑟(𝒛𝒓, 𝑡). The change in the state vector caused by the reaction 𝑟 can be 

written: 

𝒛𝒓
𝒘𝒓(𝒛𝒓,𝒕)
�⎯⎯⎯⎯� 𝒛,   𝒏𝒓 =  𝒛𝒓 − 𝒛     (1) 

When splitting the species 𝐙𝑇 → (𝐗𝑇 ,𝐘𝑇)  there is a corresponding split of the state vector 

𝐳𝑇 → (𝐱𝑇 ,𝐲𝑇), such that 𝐱 ∈ ℤ+𝑚, and  𝐲 ∈ ℝ𝑛 with 𝑁 = 𝑚 + 𝑛, and a split of the transition 

vector 𝒏𝑟𝑇 → (𝒎𝑟
𝑇,𝒏𝑟𝑇), with 𝒎𝑟 ∈ ℤ𝑚,𝒏𝑟 ∈ ℤ𝑛 for 𝑟 = 1, … ,𝑅. [6].  

The different sets are then simulated separately and synchronized at some time 𝑡. The time is 

chosen with different time stepping methods which are described in the next section.  

When using hybrid methods part of the system is simulated using ODEs and parts is 

simulated using SSA. The ODEs were solved using the fourth order Runge-Kutta method 
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(RK4) with time steps small enough for the errors to become negligible. The algorithm for 

SSA [8] is presented below.  

Algorithm SSA 

Set 𝑡 =  0, 𝑧 =  𝑧0 

Repeat 

 Select ∆t ~ Exp(w0(z)), where Exp is the exponential distribution 

 Update 𝑧 with a reaction chosen randomly, the chance of a reaction 𝑟 being 
 chosen is w𝑟/w0 

 Set t =  t +  ∆t 

Until done 

Note: The sum of all propensities is denoted w0.  

2.2 Time stepping 

The time stepping is conducted with the Euler forward, Lie-Trotter and Strang methods. Each 

method and algorithm will be explained below. 

The error in the mean of the trajectories is expected to be 

𝑒 = 𝐶 ∗ ∆𝑡𝑝 + 𝜎
√𝑘

       (2) 

Where 𝐶  is a constant depending on the time stepping method and the system being 

simulated. 𝑝 is the convergence rate of the method, which is expected to be 1 for the Euler 

forward and Lie-Trotter methods and 2 for the Strang method. Since the simulations are partly 

stochastic we get a stochastic error with expected value 𝜎
√𝑘

, where 𝜎 is the standard deviation 

and 𝑘  is the number of trajectories. Since we are interested in finding 𝑝 we need a large 

number of simulations to reduce the stochastic error.  

2.2.1 The Euler forward method 

The Euler forward method is a first-order numerical method for solving equations with a 

given initial value. 
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Algorithm Euler forward 

Choose time step ∆𝑡, set 𝑡 =  0, 𝒙 =  𝒙𝟎 and 𝒚 =  𝒚𝟎 

Repeat 

 Advance 𝒙 from t to t +  ∆t with SSA with 𝒚 frozen at t 

 Solve ODE system for 𝒚 from t  to t +  ∆t with 𝒙 frozen at t 

set 𝑡 = 𝑡 +  ∆𝑡  

Until 𝑡 = 𝑡𝑒𝑛𝑑 

2.2.2 The Lie- Trotter method 

The Lie-Trotter method (LT) is also a first-order numerical method. It can be implemented in 

two different ways, one where the deterministic part is solved before the stochastic, 

henceforth called LT-ds, and one where the stochastic part is solved before the deterministic 

one, henceforth called LT-sd. Where the d stands for deterministic and s stands for stochastic 

and the order is meant to represent the order in which the deterministic and the stochastic part 

is solved.  

Algorithm LT-ds 

Choose time step ∆𝑡, set 𝑡 =  0, 𝒙 =  𝒙𝟎 and 𝒚 =  𝒚𝟎 

Repeat  

 Solve ODE system for 𝒚 from 𝑡  to 𝑡 +  ∆𝑡 with 𝒙 frozen at 𝑡  

 Advance 𝒙 from 𝑡 to 𝑡 + ∆𝑡 with SSA with 𝒚 frozen at 𝑡 +  ∆𝑡  

set 𝑡 = 𝑡 +  ∆𝑡  

Until 𝑡 = 𝑡𝑒𝑛𝑑 

Algorithm LT-sd 

Choose time step ∆𝑡, set 𝑡 =  0, 𝒙 =  𝒙𝟎 and 𝒚 =  𝒚𝟎 

Repeat 

 Advance 𝒙 from 𝑡 to 𝑡 + ∆𝑡 with SSA with 𝒚 frozen at 𝑡 

 Solve ODE system for 𝒚 from 𝑡 to 𝑡 +  ∆𝑡 with 𝒙 frozen at 𝑡 +  ∆𝑡  

set 𝑡 = 𝑡 +  ∆𝑡  
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Until 𝑡 = 𝑡𝑒𝑛𝑑 

2.2.3 The Strang method 

The Strang method is a second-order numerical method [9]. 

Algorithm Strang method 

Choose time step ∆𝑡, set 𝑡 =  0, 𝒙 =  𝒙𝟎 and 𝒚 =  𝒚𝟎 

Repeat  

 Solve ODE system for 𝒚 from t to 𝑡 + ∆𝑡
2

 with x frozen at 𝑡 

Advance 𝒙 from 𝑡 to 𝑡 + ∆𝑡 with SSA with 𝒚 frozen at 𝑡 + ∆𝑡
2

 

Solve ODE system for 𝒚  from 𝑡 + ∆𝑡
2

  to 𝑡 +  ∆𝑡 with 𝒙 frozen at 𝑡 +  ∆𝑡  

set 𝑡 = 𝑡 +  ∆𝑡  

Until 𝑡 = 𝑡𝑒𝑛𝑑 

2.3 Piecewise deterministic Markov Processes 

The Piecewise Deterministic Markov Process (PDMP) was formalized by [10] and has since 

then found many applications in various areas, from finance to biology [11]. It can be thought 

of as a mixture of a deterministic and a stochastic approach [5].  

The PDMP constitute a subclass of Markov processes, by which events can be modelled in a 

general way with a split set of chemical species(X, Y). Up to a random jump time the process 

develops deterministically with constant stochastic variables. At the jump time the process 

moves randomly to a new state [5]. To define a PDMP we follow the construction given by 

Davis in [10]. The PDMP is implemented as in [5].  

Algorithm Pricewise Deterministic Markov Process 

Set 𝑡 =  0, 𝒙 =  𝒙𝟎 and 𝒚 =  𝒚𝟎 

Repeat 

 Choose 𝑢 ~ unif[0,1], where unif is the continuous uniform distribution 

 Set 𝐹 =  0 

 Solve the coupled differential equations system: 
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𝑑
𝑑𝑡
𝒚 = 𝑓(𝒙,𝒚)         

    
𝑑
𝑑𝑡
𝐹 = 𝑤0(𝒙,𝒚)(1 − 𝐹)

 

 Until 𝐹 =  𝑢 

 Add the time taken for F to become equal to u to 𝑡 

 Update 𝒙 using one reaction chosen with SSA 

Until done 

Note: 𝒚 is updated in the coupled differential equations system and 𝒙 is constant while 𝒚 is 

updated. The sum of all propensities for reactions involving the stochastically treated species 

is denoted w0.  

3 Systems 

In this section we describe the three systems that have been analysed and the result when the 

different methods were applied.  

3.1 Irreversible heterodimerization 

Irreversible heterodimerization is used as a simple example, which can be seen as a part of 

bigger and more complex systems. The size of the system in the simple example makes it 

suitable for numerical experiments.   

The system consists of two chemical species 𝑋 and 𝑌. The chemical reactions between the 

species 𝑋 and 𝑌 are written: 

           𝑿 + 𝒀
𝑲𝒙𝒚𝒙𝒚
�⎯⎯�∅  

𝑿
𝑲𝒙𝒙�⎯�∅ 𝒀

𝑲𝒚𝒚
�⎯�∅

∅
𝑪𝒙→𝑿 ∅

𝑪𝒚
→𝒀

                                                                                              (3) 

The reaction constants are given in Table 1 and a deterministic simulation of the system is 

shown in Figure 1.  
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Table 1. The reaction constants for the simple example. 

 

𝑲𝒙𝒚 𝑲𝒙 𝑲𝒚 𝑪𝒙 𝑪𝒚 

1 0.2 0.2 3.0 2.08 

 

Table 2. The starting values for the simple example. 
 

𝑿 𝒀 

0 0 

 

 

Figure 1. ODE simulation of the system in simple example, X and Y are the chemical species. 

As seen in Figure 1, the system has no oscillations and quickly converges to a steady state. In 

the experiments presented below the end time is therefore set to t = 4, before the system has 

reached the steady state.  

3.1.1 Numerical result and discussion of the Irreversible heterodimerization 

The solid blue line in Figure 2, Figure 5, Figure 8, and Figure 10 represent the expected size 

of the stochastic noise of the simulations. It is calculated as two times the expected stochastic 

error of the PDMP simulations. It is included to give a feeling of how important the stochastic 

noise is in the plots. Since we are interested in how well the different methods work, we are 
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not interested in situations where the stochastic error dominates. Instead we are interested in 

minimizing the systematic error caused by the different methods. 

Variation of the time step 

To investigate what effect the time step has on the different methods 1,000,000 trajectories 

are simulated for each method and time step, with time steps from 1 12⁄  to 4. The result is 

presented in convergence plots of the mean value error (Figure 2) and the variance error 

compared with PDMP (Figure 3) and the Kolmogorov distance to the distribution when using 

PDMP (Figure 4). The Kolmogorov distance is defined as 

𝐷𝑘𝑜𝑙𝑚 = sup𝑥 |𝐹1(𝑥) − 𝐹2(𝑥)|                          (4) 

where F1 and F2 are cumulative distribution functions.  

 

Figure 2. Relative error in mean value for the stochastic species (X) and the deterministic 
species (Y) between the different methods and PDMP.  
Measured convergence rates, X: Euler: 0.86, Strang: 1.85, LT-ds: 1.52.  
Measured convergence rates, Y: Euler: 0.87, Strang: 1.86, LT-ds: 1.41. 

Figure 2 shows the convergence plot of the mean value of the trajectories for the different 

methods for the stochastic (X) and the deterministic species (Y). The plots for the stochastic 

and deterministic sets look quite similar for all methods. The convergence rate for the mean 

values of all the trajectories, seen as the slope in the figures, is a little lower than expected for 

Euler forward and the Strang method. The Lie-Trotter method is a first order method and is 

expected to have a convergence rate of 1. However for LT-ds the measured convergence rate 

is significantly larger than expected. LT-sd converges very quickly but not to the value 

obtained by PDMP. None of the two Lie-Trotter methods behaves as expected, and they are 

10
-1

10
0

10
-2

10
-1

10
0

Time step

R
el

at
iv

e 
er

ro
r i

n 
m

ea
nv

al
ue

Y

 

 
Euler
Strang
LT-ds
LT-sd
Stochastic error

11 

 

10
-1

10
0

10
-2

10
-1

10
0

Time step

R
el

at
iv

e 
er

ro
r i

n 
m

ea
n 

va
lu

e

X

 

 

Euler
Strang
LT-ds
LT-sd
Stochastic error



 

 
not behaving like each other.  These results are unexpected and the cause of the discrepancy 

with theory is unknown.  

 

Figure 3. Convergence plot of the variance for the stochastic species (X) and the deterministic 
species (Y).  
Measured convergence rates, X: Euler: 1.03, Strang: 1.78, LT-ds: 1.54.  
Measured convergence rates, Y: Euler: 0.86, Strang: 1.81, LT-ds: 1.63. 

In Figure 3 it is seen how the error in variance, 𝜎2 in equation (2), varies with different time 

steps. We see that the behaviour of the variance is close to the behaviour of the mean value in 

Figure 2. The main difference seems to be that LT-sd converges slower. The convergence 

rates are close to the values for the mean value and LT-sd does not seem to converge to the 

correct value for the variance either.  

For the Strang method we see some fluctuations in the error for small time steps in all cases, 

especially for the variance. This is because the error in that case lies close to the stochastic 

error which means that the stochastic error has a greater impact on the total error which we 

can see in Figure 2. 
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Figure 4. Kolmogorov distance between the different methods and PDMP for different time steps 
for the stochastic species (X) and the deterministic species (Y).  
Measured convergence rates, X: Euler: 0.90, Strang: 1.78, LT-ds: 1.40. 
Measured convergence rates, Y: Euler: 0.96, Strang: 1.81, LT-ds: 1.39. 

Figure 4 shows the Kolmogorov distance for the different methods. The Kolmogorov distance 

is used to compare a sample of the different methods with the reference solution, the PDMP. 

When the time step is large the difference between the different methods is small. However, 

the Strang method has a higher convergence rate than the other methods, and for small time 

steps the Strang method has a much smaller Kolmogorov distance than the other methods. 

Again the Lie-Trotter method does not behave as expected. The convergence rates are close to 

what was observed for the mean value. The LT-sd behaves inexplicably as before.   

Variation of parameter Kxy 

To get an idea of how different aspects of the system affected the result of the simulations the 

parameters 𝐾𝑥𝑦, 𝐾𝑥, and 𝐾𝑦 in (3) are changed. 𝐾𝑥𝑦 is the coupling factor that couples the two 

species together. A constant time step of 0.25 is used and Kxy is varied from 1 to 10 while the 

other parameters retain their values from Table 1. 

The result is presented in plots of the mean value error (Figure 5) and the variance error 

compared with PDMP (Figure 6) and the Kolmogorov distance to the distribution when using 

PDMP (Figure 7). 
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Figure 5. Relative error in mean value for stochastic species X and the deterministic species Y 
between the different methods and PDMP, for different values of the coupling constant 𝐾𝑥𝑦. 

As we see in Figure 5 the error increases when the coupling constant increases. This is 

expected since a larger coupling factor makes the chemical species more interdependent. 

Figure 5 show that the Strang method is better than the Euler forward method regardless of 

the size of the coupling constant. 

The error for the deterministic species grows faster than the error for the stochastic species in 

and quickly becomes far too large for the result of the simulations to be of practical use. It can 

be seen in Figure 5 that at least for smaller Kxy the error for the stochastic species grows faster 

for the Euler forward method than for the other methods.   

 

Figure 6. Relative error in variance for the stochastic species X and the deterministic species Y 
between the different methods and PDMP, for different value of the coupling constant 𝐾𝑥𝑦. 

As seen in Figure 6 the error in the variance increases in ways similar to the error in the mean values.  
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Figure 7. Kolmogorov distance between the different methods and PDMP, and different coupling 
constants 𝐾𝑥𝑦 for the stochastic species (X) and the deterministic species (Y). 

The Kolmogorov distance for different values of the coupling factor is found in Figure 7. As 

in Figure 5, the error increases with larger values of the coupling factor. For smaller Kxy the 

Kolmogorov distance increases faster for the Euler forward method. 

Variation of parameter Kx 

To get an idea of how different aspects of the system affected the result of the simulations the 

parameters 𝐾𝑥𝑦, 𝐾𝑥, and 𝐾𝑦 in (3) are changed. 𝐾𝑥 is the rate at which the stochastic species 

(X) vanish. A constant time step of 0.25 is used and Kx is varied from 0.2 to 2 while the other 

parameters retain their values from Table 1.  

The result is presented in plots of the mean value error (Figure 8) and the Kolmogorov 

distance to the distribution when using PDMP (Figure 9). The variance behaves similar to the 

mean value, as for the case with 𝐾𝑥𝑦 in Figure 6, and will therefore not be presented.  
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Figure 8. Relative error in mean value for the stochastic species (X) and the deterministic 
species (Y) between the different methods and PDMP, for different size of 𝐾𝑥. 

From Figure 8 we find that the error for the deterministic species does not vary much for any 

method except the Euler forward method. The relative error of the mean value for the 

deterministic species decreases as 𝐾𝑥  increases, for both Euler forward and LT-ds. The 

explanation may be that it is closer to its steady state since the system becomes faster. It 

seems that the rate in which the stochastic species (X) vanishes does not affect the error that 

much for the Strang method in this case.   

 

Figure 9. Kolmogorov distance for the stochastic species (X) and the deterministic species (Y) 
between the different methods and PDMP, for different 𝐾𝑥. 

The Kolmogorov distance for the different methods, for different 𝐾𝑥 is seen in Figure 9. For 

the stochastic species (X) the error decreases a little when the parameter value increases. This 

is probably because the solution for the stochastic set gets close to steady-state faster when the 
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rate with which one of the sets goes to zero increases.  For the deterministic set (Y) the 

difference between the different methods decrease as 𝐾𝑥 increase. In that case the errors for 

the Strang method, LT-sd and LT-ds increase while the error for Euler forward decreases as 

𝐾𝑥 increases.  

Variation of Ky 

To get an idea of how different aspects of the system affected the result of the simulations the 

parameters  𝐾𝑥𝑦 , 𝐾𝑥 , and 𝐾𝑦  in (3) are changed. 𝐾𝑦  is the rate at which the deterministic 

species (Y) vanish. A constant time step of 0.25 is used. Ky is varied from 0.2 to 2 while the 

other parameters retain their values from Table 1. 

The result is presented in plots of the mean value error (Figure 10) and the Kolmogorov 

distance to the distribution when using PDMP (Figure 11). The variance behaves similar to 

the mean value, as for the case with 𝐾𝑥𝑦 in Figure 6, and will therefore not be presented.  

 

Figure 10. Relative error in mean value for the stochastic species (X) and the deterministic 
species (Y) between the different methods and PDMP, for different size of  𝐾𝒚. 

Figure 10 depicts how the relative error in the mean value between the different methods and 

PDMP decreases as the rate (𝐾𝑦) in which the deterministic set (Y) goes to the empty set 

increases. As before, the explanation may be that the solution at the final time is closer to the 

steady state.  
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Figure 11. Kolmogorov distance for the stochastic species (X) and the deterministic species (Y) 
between the different methods and PDMP, for different 𝐾𝑦. 

The Kolmogorov distance for the different methods and for different 𝐾𝑦 is found in Figure 11. 

For the stochastic species (X) in Figure 11 the result is similar to the case with 𝐾𝑥 in Figure 9, 

the error decreases as 𝐾𝑦 increases.   

For the deterministic species (Y) the increase of 𝐾𝑦 makes the errors increase for all methods 

except for Euler forward, for which the error even decreases a little. There is a big difference 

between the errors for the different methods, no matter the size of 𝐾𝑦.  

3.1.2 Summary of the Irreversible heterodimerization 

The simple example with two chemical species shows that the Strang method and Euler 

forward converge as expected. The Lie-Trotter method however does not behave as expected. 

Instead of converging with a rate of 1, as expected since the method is of order 1, it converges 

with a rate close to 1.5 or quickly converged to some incorrect value depending on if the 

stochastic part was calculated before or after the deterministic part. It could be of interest to 

further investigate the cause of this behaviour. 

The simple example also shows that the larger the value of the coupling factor is, the larger 

the error get for all hybrid methods tested. The error grows larger faster for the deterministic 

variable and the coupling factor does not need to be increased much to make the result 

practically useless. 

The factors that control the rate with which the species vanish do not affect the error as much 

as the coupling factor. But an increased disappearance rate makes the error smaller in some 
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cases, even if the difference is not as big as for the other factors. The reason may be that the 

system is closer to the steady state in these cases at the final time. However the error could 

also increase and the error is far from the stochastic error in most cases, so there might be 

some other explanation.  

3.2 Metabolites controlled by enzymes 

This is a simple generic model with two metabolites 𝐴 and 𝐵 and two enzymes 𝐸𝐴 and 𝐸𝐵 as 

in [6] and [13]. The system is small and the behaviour of different parts of the algorithm are 

therefore easily investigated.  This might provide insight into some of the limitations of the 

hybrid algorithm, and give guidelines for how to choose some of the parameters [6]. 

The production of the metabolites, 𝐴 and 𝐵, is regulated by the enzymes. The reactions are: 

 𝑨 + 𝑩
𝒌𝟐𝒂𝒃�⎯� ∅  

∅

𝒌𝒂𝒆𝑨
𝟏+ 𝒂

𝑲𝒊�⎯� 𝑨  ∅

𝒌𝒃𝒆𝑩
𝟏+ 𝒃

𝑲𝒊�⎯� 𝑩
𝑨

𝝁𝒂
�� ∅

∅

𝒌𝒆𝑨
𝟏+ 𝒂

𝑲𝒓�⎯� 𝑬𝑨
 𝑬𝑨

𝝁𝒆𝑨�� ∅

 
 
 

𝑩
𝝁𝒃
�� ∅

∅

𝒌𝒆𝑩
𝟏+ 𝒃

𝑲𝒓�⎯� 𝑬𝑩
𝑬𝑩

𝝁𝒆𝑩�⎯� ∅

                                                                                  (5) 

The reaction constants are given in Table 2. The system is partitioned as in [6] so that the 

metabolites A and B are treated as stochastic variables and the enzymes 𝐸𝐴 and 𝐸𝐵 are treated 

deterministically.  

Table 2. The reaction constants for the metabolite-enzyme model. 

𝒌𝟐 𝒌𝒂 𝒌𝒃 𝑲𝒊 𝝁 𝒌𝒆𝑨 𝒌𝒆𝑩 𝑲𝒓 

0.001 0.3 0.3 60 0.002 0.02 0.02 30 
 

 

Table 3. Starting values for the metabolite-enzyme model. 

𝑨 𝑩 𝑬𝑨 𝑬𝑩 

33 33 6 6 
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3.2.1 Numerical result and discussion of the Metabolites controlled by enzymes 

The probability density function for the metabolites and the enzymes, calculated from 8000 

trajectories of PDMP, is plotted in Figure 12.  

 

Figure 12. Probability density function at t=1000 for A and B computed with PDMP. 

The PDMP does not capture the characteristic shape of the marginal distribution of A and B 

sufficiently well compared to the figure plotted with SSA in [6]. The result is the same as for 

the hybrid method in [6]. The result is expected since the simplifying assumptions in the 

derivation of the underlying equations are violated because of the significant correlation 

between the species in the stochastic and deterministic set. A good splitting should ideally 

keep highly correlated species within the stochastic subset [6]. This is not the case here and 

since our reference solution does not give a realistic simulation the other hybrid methods are 

not tested.  

3.3 Circadian rhythm model 

A wide range of organisms use circadian clocks to keep an internal sense of daily time and 

regulate their behaviour accordingly. Most of these clocks use intracellular genetic networks 

based on positive and negative regulatory elements [12]. Oscillator models are control 

systems which assume periodic oscillators of certain molecular species to appear in order to 

establish a circadian rhythm in the organism [6].    
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The model used is the same as in [12] and [6]. It has nine variables. It involves two genes, 𝐷𝑎 

and 𝐷𝑟, an activator A and a repressor R, which are transcribed into mRNA and subsequently 

translated into protein, 𝑀𝑎  and 𝑀𝑟 . The activator and repressor can associate and form a 

complex C, in which the activator A is degraded. The variables 𝐷𝑎′ and 𝐷𝑟′ are the genes 𝐷𝑎 

and 𝐷𝑟 with a bound activator. In the model it is assumed that there is only one gene coding 

for the repressor and the activator. Thus 𝐷𝑎 + 𝐷𝑎′ = 1 , and the same holds true for the 

repressor gene. The reactions for the nine molecular species are: 

𝑫′𝒂
𝜽𝒂𝑫′𝒂�⎯⎯� 𝑫𝒂

𝑫𝒂 + 𝑨
𝜸𝒂𝑫𝒂𝑨�⎯⎯⎯� 𝑫′𝒂
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𝜽𝒓𝑫′𝒓�⎯⎯� 𝑫𝒓
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�                       (6) 

The reaction constants are found in Table 4. The partitioning is the same as in [6], i.e. A and 

R are treated as stochastic variables, while the rest of the species are treated deterministically.  

Table 4. Constants for the Circadian rhythm model. 

𝜶𝑨 𝜶′𝒂 𝜶𝒓 𝜶′𝒓 𝜷𝒂 𝜷𝒓 𝜹𝒎𝒂 𝜹𝒎𝒓 𝜹𝒂 𝜹𝒓 𝜸𝒂 𝜸𝒓 𝜸𝒄 𝚯𝒂 𝚯𝒓 

50 500 0.01 50 50 5 10 0.5 1.0 0.2/0.08 1.0 1.0 2.0 50 100 
 

 

Table 5. Starting values for the Circadian rhythm model. 

𝑫𝒂 𝑫𝒓 𝑫′𝒂 𝑫′𝒓 𝑴𝒂 𝑨 𝑴𝒓 𝑹 𝑪 

0.2 0.2 0 0 0 0 0 0 10 
 

 

In this type of control system there is a high correlation between many of the species. Even if 

the species A and R have large copy numbers most of the time, at critical time intervals they 

drop near zero [6]. Two different values of 𝛿𝑟 are used, 0.2 and 0.08. The typical behaviour of 

the circadian rhythm with 𝛿𝑟 = 0.2 when PDMP is used is shown in Figure 13. 
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Figure 13. Typical behavior of circadian rhythm simulated with PDMP when 𝛿𝑟 = 0.2. 

  3.3.1 Numerical result and discussion of the Circadian Rhythm 

Since the Strang method is the best method for the simple example (irreversible 

heterodimerization), the circadian rhythm is only simulated with the Strang method and the 

PDMP as a reference solution.  

To investigate how well the Strang method simulates the circadian rhythm for different size of 

the time step the circadian rhythm is simulated for 1000 trajectories for both values of 𝛿𝑟. 

Each one of the trajectories is simulated for 1000 hours.  The result for two different time 

steps, 0.01 h and 0.32 h when  𝛿𝑟 is 0.2, is shown in Figure 14. 
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Figure 14. Typical behaviour for Circadian Rhythm simulated with the Strang method 
with ∆𝒕 = 0.01 h and ∆𝒕 = 0.32 h when 𝜹𝒓 = 0.2. 

In Figure 14 it is seen that the Strang method with the time step 0.01 h gives a simulation that 

looks quite similar to the one with the PDMP in Figure 13. However, when the time step 

increases to 0.32 h the amplitudes of the peaks as well as the length of the periods become 

more random. To see this better the autocorrelation for the PDMP and for the Strang method 

with time steps 0.01 h and 0.32 h is plotted in Figure 15. The autocorrelation is defined as 

𝐴𝑘 = ∑ 𝑌𝑖∙𝑌𝑖+𝑘𝑁−𝑘
𝑖=1
𝑁−𝑘

                          (7) 

Where Yn is the measurement at point n, k is the distance between the points and N is the total 

amount of points.  

 

Figure 15.  Autocorrelation of the circadian rhythm using PDMP and the Strang 
method using different ∆𝒕 for 𝜹𝒓 = 𝟎.𝟐. 

As we see in Figure 15 the autocorrelation plots flattens out as the time step increases due to 

the increased randomness. To measure convergence the 2-norm of the difference between 

simulations using different time steps and PDMP was measured. When calculating the 
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autocorrelation measurements of a maximal distance of 50 hours is used when δr = 0.2 and a 

maximal distance of 100 hours when δr = 0.08 since the system has a longer period for that 

value.  

 

Figure 16. Convergence plots for both values of  𝛿𝑅, the straight lines are the stochastic 
error of the PDMP method multiplied by 2.  

As we see in Figure 16 the Strang method converges for both values of 𝛿𝑅 for our choice of 

measuring the convergence. It is noted that for δR  = 0.2 there is a stochastic reaction 

approximately every 0.0024 h when using PDMP while for 𝛿𝑅  = 0.08 there is one 

approximately every 0.0034 h. These values could be interesting to compare to the size of the 

time step in the Strang method to find out which method is the fastest given some error 

tolerance.  

3.3.2 Notes about the ODE solver for the Circadian Rhythm 

RK4 is used as the numerical solver which leads to exponential growth of the number of 

molecules with time even for very small time steps, an example can be seen in Figure 17.  
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Figure 17. Mean value of A and R for windows of 100 hours for one trajectory 
when 𝛿𝑅 = 0.2, 160,000 ODE time steps per hour is used. The hybrid method used is the 
PDMP.  

The same problem is found when using a pure deterministic simulation of the system. The 

problem is probably due to the stiffness of the system, and when using MATLAB's ode15s 

solver no growth is found. It would probably be a good idea to use an implicit ODE solver 

instead of an explicit one or using adaptive time steps, especially when making long time 

series.  

All results for the Circadian Rhythm uses 160,000 ODE time steps per hour of simulated time, 

and this part of the calculation takes most of the time. However the growth is expected to 

have little impact on the results since the length of the time span we simulated was quite short 

(1000 hours as mentioned above).  

4 Conclusion 

The aim of this project was to compare three different methods for time stepping in the hybrid 

method by investigating their accuracy in different systems. The time stepping methods we 

have looked at are the Euler forward method, the Lie-Trotter method and the Strang method, 

and the systems we have simulated were a simple example with two chemical species, the 

circadian rhythm and metabolites controlled by enzymes.  
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The results show that the Strang method is the best method, with smallest error and fastest 

convergence rate for the simple example. However when using big time steps the difference 

between the methods is small, although the error is then too great for the result to be of any 

practical use.  

The coupling factor plays an important role for how well the simulation works in the simple 

example. The greater the coupling factor gets the greater the error becomes for all methods. 

The value of the factors only affecting one of the species have some, but not a large, impact 

on the error.  

Metabolites controlled by the enzymes is not possible to simulate with hybrid methods. The 

system has too many highly correlated species, and the splitting of the chemical species is 

done with incorrect assumptions.  

Surprising is that the Lie-Trotter method does not behave as we expected.  The result differs a 

lot depending on if the stochastic or the deterministic part is simulated first. But none of the 

methods converge as expected. To find out why more research is needed.  

5 Future research 

This project has improved the understanding for how different hybrid methods works, and 

when they encounter problems. However, more research can be done to increase the 

knowledge.  

Especially more research need to be done on the Lie-Trotter method.  Researchers should look 

into why and when LT-ds converge faster than expected and why and when LT-sd converges 

to the wrong values. As an example the simple example could be simulated with both species 

being treated stochastically or both species being treated deterministically to see if the 

methods still behave unexpectedly.   

Research needs to be done to find a way to a priori find which hybrid method is the most 

efficient given a chemical system and an error tolerance.  
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