
Institutionen f�or informationsteknologi

Implementation and Performance
Studies of a Three-phase Model
Solver

Alexandra Redlund, Gong Cheng

Project in Computational Science: Report

P
R
O
J
E
C
T
R
E
P
O
R
T

Abstract

This project considers the implementation of a highly parallel simu-
lation of a three-phase problem. The model used is based on the
Cahn-Hilliard equation, where the phases are controlled by the so-
called concentration.
Our implementation is written in C++ based on a finite element package
called deal.ii and a parallel framework Trilinos. We show that such an
implementation can exhibit good parallel scaling by running it on the
UPPMAX computer system on up to 1024 cores.
Comparing the performance of our implementation to that of a pre-
vious two-phase implementation, we observe that adding more phases
does not impact performance.

1

Contents

1 Introduction 3

2 Three-phase model 4

3 Method 5
3.1 Discreted Formulation . 6
3.2 Nonlinear term and Quasi-Newton method 6
3.3 Permutation of the block matrix 8
3.4 Preconditioning . 8
3.5 Solution algorithm . 10
3.6 Parallel Implementation . 10

4 Results 11
4.1 Number of iterations . 11
4.2 Speedup . 12
4.3 Weak scalability . 13

5 Discussion 14
5.1 Choice of time steps . 14
5.2 Performance influenced by the architecture of HPC 14
5.3 Expand to multiphase problems 16

6 Conclusions 16

2

1 Introduction

Multi-phase flows are physical systems where more than one fluid interact.
These systems are very important to study since they are central in many
technical applications. In this project we have studied three-phase flows.

Examples of such systems are three-phase flows in porous media where
the phases interact and interfaces between them change as the liquids flow
through the media cavities. Another example is production where water, oil
and air are often mixed.

As a three-phase flow system evolves over time the existing interfaces be-
tween liquids can change at any time. When two bodies of different liquids
separate to allow the third liquid to fill the gap, new interfaces between the
two bodies and the third liquid are created. When two bodies of the same
liquid merge, the interfaces to other liquids vanish. Any simulation of such
systems needs to take these interfaces into account. However, because of
the potentially large number of interfaces and that they can appear and dis-
appear at any time, it becomes complicated to track them. In this project
we have used a diffuse-interface phase-field model to implicitly track the in-
terfaces between phases. Here the interfaces need not be known beforehand
since they are not explicitly tracked, instead they are represented with a
mathematical model that indicates where the interfaces are and that varies
in space and time. Using this technique the effective thickness of the inter-
faces depend on the spatial resolution of the simulation. Thin interfaces are
required to accurately simulate real physical systems. This forces us to use
numerical methods of high resolution and accuracy.

The goal of this project has been to allow for the solution of such highly re-
solved systems by utilizing parallel computers. Using a previous two-phase
C++ implementation and a three-phase MATLAB implementation we set
out to create a parallel three-phase C++ implementation for high perfor-
mance clusters. During the project we have had access to the UPPMAX
computer system [1] for test runs of our program.

This report is structured as follows. First, in Section 2, the three-phase
model is described and then in Section 3 the numerical solution method
being used is explained. Section 4 shows the results of our numerical exper-
iments and in Section 5 a discussion about the results is presented. Conclu-
sions are found in Section 6.

3

2 Three-phase model

The model we use to describe the three-phase system represents each phase
by a scalar variable, referred to as a concentration ci(x, t). These concentra-
tions are modeled such that they attain a value of 1 inside their own phase
i and a value of 0 inside other phases. Thus, the phase at a given point in
space and time can be derived from the values of the concentrations at that
point. Over the interface between phases these concentrations vary rapidly
but smoothly, from one value to another, creating a diffuse interface between
the phases. These concentrations can be seen as mole fractions and obey
the relations

n∑
i=1

ci(x, t) = 1 (1)

and
0 ≤ ci(x, t) ≤ 1.

It follows from (1) that the concentration of a given phase can be calculated
from the other concentrations according to cn = 1 −

∑n
i=1 ci. Thus, in our

case of three phases, we only need to calculate two concentrations since the
third can be calculated from the first two. This simplifies the numerical sim-
ulations but what is more interesting with this model is that the interfaces
are implicitly given. This eases numerical simulation significantly. First of
all, we need not know the interfaces initially. We solve for the concentration
from whatever our initial data is and can derive the position of the interfaces
from this at each point in space and time. In this way, the complexity of
the simulation is not dependent on the current state of the simulation as it
is when explicitly tracking interfaces, interactions between them and how
they are created, deformed, merged and destroyed.

The set of equations we have used that describe this process are called the
Cahn-Hilliard equations. They are two coupled fourth order, time depen-
dent partial differential equations one for each of the phases that model the
process of phase separation and spontaneous forming of domains that are
pure in each component. To write these down we first define another basic
physical quantity, the so called chemical potential ηi(x, t). The chemical
potential is a form of potential energy that changes during phase transitions
and is released and absorbed during chemical reactions. Mathematically it
is the partial derivative of the free energy with respect to the amount of a
chemical substance. Using this, the Cahn-Hilliard equation can be written
as

∂c
∂t

= ∇ · (L (c)∇η) (2)

(L∇η)i · n = 0. (3)

4

Here the mobility matrix L(x) is symmetric and positive semidefinite. To
make sure mass is conserved and that (1) is satisfied L has to satisfy

L(c)e = 0.

Using the chemical potential, equation (2) can be rewritten as a system
of two coupled second order equations, see [6] for more information. The
resulting version of the Cahn-Hilliard equations is

ηi − F ′(ci) + 3ε
4 ∆ci = 0, (4)

L∆ηi −
∂ci
∂t
− (u · ∇) ci = 0, (5)

where ηi is the chemical potential, F (ci) is the Jacobian (nonlinear term),
ε is the interface width, ci is the concentration, L is the mobility matrix
and u is the velocity vector. This is a nonlinear, coupled system of partial
differential equations. The nonlinearity lies in F (ci) which is defined as

Fi(c) = 4vT
vi

∑
j 6=i

[
1
vj

(
∂f0
∂ci
− ∂f0
∂cj

)]
, i = 1, 2 , (6)

where f0 = f
(1)
0 + f

(2)
0 is given by

f
(1)
0 (c) = σ12c

2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3 (v1c1 + v2c2 + v3c3)

f
(2)
0 (c) = 3λv1v2v3.

These are not only affected by the concentration but also the surface tensions
between the phases, given by σ12, σ13 and σ23. We note that here a certain
polynomial form of the function F is used , as described in [7].

We have looked at two different setups that give different characteristics to
the solution. These setups are called partial and total spreading and are
controlled by the chosen surface tensions, see [6]. Thus, the choice of initial
condition affects F (ci).

3 Method

The Cahn-Hilliard equation in (4) and (5) is a coupled system of two sec-
ond order partial differential equations [8] for both the concentration c and
the chemical potential η. There is no analytical solution for these time de-
pendent nonlinear system of partial differential equations. As a result, a
numerical method is required to solve this problem.

5

3.1 Discreted Formulation

The system is discretized by the finite element method (FEM) in space with
piecewise linear basis functions for the two unknowns c and η and a uniform
square mesh. The backward Euler method is implemented in time domain
for the stability of the numerical method, although it introduces a solution
of a linear system for each time step.

The fully discretized system at time tk is in the form

Mηk −F(ck)− γKck = 0 (7)
∆tkωKηk +Mck + ∆tkWck −Mck−1 = 0 ,

where ∆tk is the time step that tk+1 = tk + ∆tk , γ and ω are the con-
stants governed by Peclet and Cahn number. The unknown variables are
ck = [(ck1)T , (ck2)T]T and ηk = [(ηk1)T , (ηk2)T]T where ckj = {ckj,i}Ni=1 and
ηkj = {ηkj,i}Ni=1 are the corresponding unknown FEM vectors and they can
be also written as the linear combinations of FEM basis functions ϕi(x), i =
1, 2, ..., N that cj(x, t) =

∑N
i=1 c

k
j,iϕi(x), ηj =

∑N
i=1 η

k
j,iϕi(x), j = 1, 2. The

index j represents the two phases to be solved. As a result, the matrices

M =
[
M

M

]
, K =

[
K

K

]
, W =

[
W

W

]
, (8)

refer to block diagonal matrices with mass matrix M , stiffness matrix K
and convection matrix W in FEM, respectively, reflecting the fact that we
handle two phases.

3.2 Nonlinear term and Quasi-Newton method

The nonlinear term F(ck) = (FT1 (ck),FT2 (ck))T is a vector with elements

Fi,m(ck) =
∫

Ω
Fi

(
N∑
n=1

ck1,nϕn(x),
N∑
n=1

ck2,nϕn(x)
)
ϕm(x) dx, i = 1, 2 , (9)

where ϕm(x), m = 1, ..., N are the FEM basis functions and ck = [ck1, ck2]T
are the unknown vectors of concentrations. Fi(c) denotes the nonlinear term
in (6).

In each time step, this nonlinear system is solved by a Quasi-Newton method
[6] which simplifies the computation by using an approximate Jacobian ma-
trix in the Newton iteration.

We denote xk = [ck, ηk]T and system (7) as fk(xk) = 0 for the time step at
tk. Considering the Newton’s method for solving the nonlinear system, at

6

the sth iteration

xk,s+1 = xk,s −∆xk,s, s = 1, 2, ... , (10)

until the sequence converges. In another word, the nonlinear iteration will
stop until ∆xk,s is closed enough to 0. The value of ∆xk,s is governed by
the system

Ak,s∆xk,s = fk(xk,s) , (11)

where Ak,s is the exact Jacobian of the system in (7) at time tk. The
Jacobian can be represented in matrix form that

Ak,s =
[
M −J (F(ck,s))− γK

∆tkωK M+ ∆tkW

]
, (12)

where J (F(c)) is the Jacobian matrix of function F(c). Thus, the linear
system (11) is solved for each Newton iteration and the solution is updated
by (10) until the difference ∆xk,s is negligible.

However, the rate of convergence of Newton’s Method could be rather slow
and the computation is quite heavy since the system matrix of Newton
method in (12) is recomputed for every iteration. In order to simplify the
nonlinear system, a quasi-Newton method is implemented with a constant
Jacobian for the nonlinear iteration in (11) such that the linear system is
simplified (see [6]) as to solve

Ak0∆xk,s = f(xk,s) , (13)

where Ak0 is an approximation of Ak,s obatained by neglecting the nonlinear
term and convection term, namely,

Ak0 =
[
M −γK

∆tkωK M

]
. (14)

The matrix Ak0 remains constant as long as the time step does not change.
In this case, the matrix can be denoted as

A0 =
[
M −γK

∆tωK M

]
, (15)

since a fixed time-step backward Euler method is implemented.

Consequently, the computation is to solve a system of constant matrix but
with different right hand side f(xk,s) which is evaluated by (7) for each
nonlinear iteration.

7

3.3 Permutation of the block matrix

Considering the block structure (8) of the mass matrix and stiffness matrix
in FEM, matrix A0 in (15) can be expanded as (16)

A0 =

M −γK

M −γK
∆tωK M

∆tωK M

 . (16)

After performing a block permutation with a matrix P of the form

P =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1

 , (17)

we obtain

P TA0P =
[
A0

A0

]
=

M −γK

∆tωK M
M −γK

∆tωK M

 (18)

and we see that the matrix (18) is block-diagonal and at time tk for the sth
nonlinear iteration the system in (13) can be divided into two independent
sub-system with same matrix A0 but different right hand sides bk,s1 and bk,s2
so that

A0

[
ηk,si
ck,si

]
= bk,si , i = 1, 2 , (19)

where
A0 =

[
M −γK

∆tωK M

]
(20)

and
bk,si =

[
Mηk,si − Fi(c

k,s
i)− γKck,si

∆tkωKηk,si +Mck,si −Mck−1,0
i

]
, (21)

where ck,si and ηk,si are the current value of the unknowns in the process of
Quasi-Newton iterations, ck−1,0

i is the numerical solutions for the previous
time step, and Fi(ck,si) is the function described in (6).

3.4 Preconditioning

So far, by the above described algebraic simplifications, the size of system
to be solved is decreased to a half of the original one. However, to achieve

8

a high accuracy without missing the interfaces, the space discretization in
finite element method should be rather fine that the degrees of freedom are
always too large and the linear system in (19) is hard to be solved. Therefore,
an efficient solving algorithm is required for the linear system.

In [4], it is shown that the matrix A0 can be further modified in order to
simplify the solution process. Namely, the matrix A0 is approximated by
Â0 , where

Â0 =
[

M −γK
∆tωK M + 2

√
βK

]
, (22)

and β = ∆tωγ. In turn, Â0 can be factorized exactly as

Â0 =
[

M 0
∆tωK M +

√
βK

] [
I −γM−1K
0 M−1(M +

√
βK)

]
. (23)

Computation shows, see also in [4], that the solution of the system

Â0

[
x1
x2

]
=
[
f1
f2

]
(24)

can be obtained by only solving system with M +
√
βK twice and some

additional vector operations. To see this, we consider the solutions that[
x1
x2

]
= Â−1

0

[
f1
f2

]
=
[γ√

β
(g1 + g2)
−g2

]
, (25)

where

g1 = (M +
√
βK)−1(

√
β

γ
f1 + f2) , (26)

g2 = (M +
√
βK)−1(

√
β

γ
f1 −Mg1) . (27)

To summarize, the original nonlinear system is discretized in time by back-
ward Euler method and formulated to a series of linear systems by Quasi-
Newton method in (12) and (13). In one nonlinear iteration, the linear
system s(13) with a 4 × 4 block size matrix is simplified as solving a one
block size matrix twice with some matrix vector multiplications and vector
updates. The matrix M+

√
βK is symmetric and positive definite, it can be

solved by the Conjugate Gradient Method (CG) and an algebraic multigrid
method (AMG) as a preconditioner. As a result, the FEM problem in (7)
is reduced to a quarter of the original size and the rates of convergence for
both nonlinear and linear iterations are accelerated by optimized numerical
methods.

9

3.5 Solution algorithm

Summing up all above, the solution algorithm can be described as three
levels of nested loops as in Algorithm 1. The time loop in the outermost level
is responsible for updating solutions for each time step. In the middle level,
there is a nonlinear loop for the Quasi-Newton method. In each nonlinear
iteration, two sub-systems with different right hand sides are solved by CG
method with AMG preconditioner to accelerate the convergence.

Algorithm 1 The solution procedure
Initialize the grid
Assembly mass matrix M and stiffness matrix K
Set the initial values for c and η
for each time step do

while nonlinear solution not converge do
Assembly matrix to compute and update right hand side vectors
for i = 1 to 2 do

Solve g1 and g2 by CG method with AMG preconditioner
Update ci and ηi

end for
end while
Update linear solutions of c and η

end for

In this way the task to solve system with A0 is reduced to a quarter of the
original size which significantly improves the performance in both serial and
parallel computation, especially for very large problem size.

3.6 Parallel Implementation

As Algorithm 1 shows, the main computation tasks in this solver are assem-
bly of matrices, matrix-vector multiplications, vector operations and the
preconditioned iteration method for the linear systems with M +

√
βK.

The algorithm is implemented using deal.II(see [2]) which is an open source
library for finite element applications in C++. It is used to set up all the
required variables in FEM, such as the mesh, degree of freedom, the matri-
ces and vectors. As the sparsity of mass matrix and stiffness matrix, the
complexity of matrix assembly is O(N) (or linear) to the problem size, and
the memory cost is also linear.

Most of the deal.II matrices and vectors are wrapped by a framework for
advanced parallel algorithm called Trilinos([3]), which takes care of data
partitioning, load balance as well as for the CG iteration solver and the
preconditioner. The framework based on Message Passing Interface (MPI)

10

Size 66564 264196 1052676 4202500 16793604 67141636 268500996
Partial Sp. 21/2 22/3 22/4 23/4 23/5 24/5 25/7

Total Sp. 41/3 35/3 32/4 30/4 28/5 27/5 27/5

Table 1: Number of nonlinear and inner CG iterations for one time step.
(’Sp.’ stands for spreading.)

provides complexity of O(N) for distributing data into multi-cores as well
as computing matrix-vector multiplication for sparse matrix[5].

The only solution procedure in the algorithm is for the linear system (26)
and (27) by preconditioned CG solver. This method gives an almost con-
stant number of iterations for CG method[4, 6] such that the complexity
is almost linear. As a result, the total complexity of the algorithm is ex-
pected to be almost linear to the size of problem for both serial and parallel
implementation.

4 Results

The numerical experiments are done on a UPPMAX cluster which has 160
nodes and each node has two 8-core Opteron 6220 processors running at 3
GHz. The test cases vary from 66564 to 268500996 degree of freedom in up
to 1024 cores for both partial and total spreading condition.

4.1 Number of iterations

The number of iterations is not changed for the same problem with different
number of cores in parallel. Table 1 illustrates the number of iterations for
Quasi-Newton Method (left) with stopping criteria 10−6 and CG Method
with AMG preconditioner (right) at a certain time step that ∆t = h

10 where
h is the space discretization parameter.

The partial spreading case turns out to be a simpler problem since the shape
of the droplet and interfaces does not deform quite much. The whole domain
does not contain any sharp angle and extreme values so that the nonlinear
system is rather ’smooth’ to be solved that the nonlinear iterations stay
between 20 and 25 for all these cases. However, in total spreading, it takes
twice as many iterations as for the partial spreading on the coarsest mesh.
The iteration counts decrease as the mesh are finer, since the approximation
of Jacobians becomes more accurate. Meanwhile, the iterations of the inner
CG solver are all below 5 which leads to a nearly constant number of average
iterations per time step as expected. As a result, the computation does not
become much heavier when the mesh is refined.

11

1 4 16 64
0

4

8

12

16

20

24

Number of Cores

S
p
e
e
d
u
p

Total Spreading

Partial Spreading

Linear Speedup

Figure 1: The speedup for problem size of 4202500.

4.2 Speedup

The speedup is defined as Sp = T1/Tp , where p is the number of processors,
T1 is the time of sequential execution on one processor and Tp is the parallel
execution with p processors. According to some pre-tests, the problem size
is chosen as 4202500 which gives an acceptable sequential execution time
(less than 3 hours) and the mesh size is not too large so that it resolves the
interface well enough. Figure 1 illustrates the speedup of partial and total
spreading cases by using up to 64 cores.

These two test cases show nearly the same speedup although the number of
iterations and time cost in computation of partial spreading case is around
75% of those in total spreading. They achieved ideal speedup when expanded
from 1 to 4 cores. However, in 16 cores, the speedup are only half of the
ideal value since the communication becomes heavier than the computation
when more cores are involved in this problem size. The speedup becomes
even worse when the program is run on 64 cores and decreases to 1/3 of the
ideal value.

The decrease of performance is due to the overhead of communication be-
tween cores in CG iteration solver and matrix vector multiplication which
can not be totally overlapped by the computation.

12

Size 66564 264196 1052676 4202500 16793604
Number of Cores 1 4 16 64 256

Partial Spreading
Average wall time (s) 1.67 2.39 4.64 9.09 10.99

Factor of increase 1.43 1.94 1.96 1.21
Total Spreading

Average wall time (s) 3.18 3.65 6.97 10.43 13.03
Factor of increase 1.15 1.91 1.50 1.25

Table 2: Weak scalability tests (set 1), average wall time in seconds and
factor of increase of time after one refinement of the mesh.

Size 264196 1052676 4202500 16793604 67141636
Number of Cores 1 4 16 64 256

Partial Spreading
Average wall time (s) 7.13 11.23 21.67 33.89 54.56

Factor of increase 1.58 1.93 1.56 1.61
Total Spreading

Average wall time (s) 11.49 16.46 31.63 42.94 64.30
Factor of increase 1.43 1.92 1.36 1.50

Table 3: Weak scalability tests (set 2), average wall time in seconds and
factor of increase of time after one refinement of the mesh.

4.3 Weak scalability

The weak scalability tests are performed in two sets of different problem
sizes each for total and partial spreading. The average wall time per time
step and the factor of increase are shown in Table 2 and 3. Each of ex-
periments ensures the same workload per core for sequential and parallel
implementation. There are 66564 elements per core in set 1 and 264196
elements per core in set 2. The factor of increase is introduced to measure
the execution time grows from one mesh refinement to the next. Ideally,
this factor is expected to be close to 1 to show that the algorithm is able to
achieve a good performance in parallel.

There are several test cases with the factors around 1.9 which contains all
cases on 16 cores and a partial spreading case on 64 cores. One reasons
is that the number of iterations is increased as the grid refined. However,
this can not explain all of these observations. In total spreading, as shown
in Table 1, the number of total iterations decrease from 32/4 to 30/4 for
16 cores in set 2 (which has a factor of 1.92). Therefore, another reason is
considered, namely, that the architecture of the computing cluster also has
large influence on the performance and it is discussed in the following.

13

System Size
∆t 66564 264196 1052676 4202500 16793604 67141636

1.5h 25 / 3 25 / 4 24 / 4 25 / 5 25 / 6 25 / 7
h/4 21 / 2 23 / 3 23 / 4 23 / 5 24 / 5 24 / 6
h/10 21 / 2 22 / 3 22 / 4 23 / 4 23 / 5 24 / 5

Table 4: Average number of nonlinear and inner CG iterations of partial
spreading cases over 10 time steps.

System Size
∆t 66564 264196 1052676 4202500 16793604 67141636

1.5h No convergence 53 / 5 44 / 6 39 / 7
h/4 597 / 3 44 / 3 39 / 4 35 / 5 32 / 5 30 / 6
h/10 41 / 3 35 / 3 32 / 4 30 / 4 28 / 5 27 / 5

Table 5: Average number of nonlinear and inner CG iterations of total
spreading cases over 10 time steps.

5 Discussion

5.1 Choice of time steps

As mentioned in Section 3.4, the CG solver with an AMG preconditioner
will provide almost constant number of iterations, shown in Table 4 and 5
with the same error tolerance for Quasi-Newton iterations. The first number
represents the average nonlinear iterations over 10 time steps for solving a
sub-system in (19) and the second number is the average CG iterations for
solving the system of M +

√
βK in (26) and (27).

The number of Quasi-Newton iterations also remains in most of the cases
within acceptable bounds. For partial spreading, the choice of ∆t has little
effect on the number of iterations. However, in total spreading, it takes
more nonlinear iterations for coarser mesh in both space and time domain.
At ∆t = h/4, where h is the mesh size, the problem in a size of 66564
takes ten times as many nonlinear iterations as ∆t = h/10 to achieve the
same stopping criteria. Furthermore, it never converge for total spreading
at ∆t = 1.5h until a finer mesh is used.

5.2 Performance influenced by the architecture of HPC

The weak scalability results are further investigated by computing the ave-
rage time cost for one inner linear iteration. Figure 2 shows the average
execution time for one inner linear iteration with 65536 degree of freedom

14

1 4 16 64 256
0

10

20

30

40

50

60

Number of Cores

T
im

e
 p

e
r

in
n
e
r

it
e
ra

ti
o
n
(m

s
)

Total Spreading

Partial Spreading

Figure 2: Time cost (ms) per inner linear iteration for the problem size of
65536 dof per core.

per core and Figure 3 is the time cost for 4 times larger problems.

There is no big difference in the execution time of one inner iteration be-
tween total and partial spreading. As a result, the extra time costs in total
spreading cases are mainly due to the difficulties in solving the nonlinear
system.

Considering the architecture of the computing cluster, which has 160 nodes
and each node has two 8-core processors, the time cost for 1 and 4 cores
are almost the same in these two figures since the program is still running
on one processor. The parallel performance is nearly ideal and problem size
fits in the local cache memory.

However, when the problem is expanded to 16 cores, the time cost is dou-
bled although it is still in one node. These 16 cores are distributed in two
processors on the same node that the communication between processors is
much heavier than inside and the usage of cache and local memory gets less
efficient. Also, it is the reason why in Table 2 and 3 we see a large decrease
in performance all at 16 cores with factors around 1.9 after scaled up from
4 cores.

For the larger problem size (Figure 3), the time costs grow with low factors
when the 64 cores are in used. As it only takes 4 nodes, the communication
among nodes in such a simple network does not affect much the perfor-
mance. Finally, when the work is spread among the network to 16 nodes
(which contains 256 cores), the overhead of communication becomes more

15

1 4 16 64 256
0

50

100

150

200

250

Number of Cores

T
im

e
 p

e
r

in
n
e
r

it
e
ra

ti
o
n
(m

s
)

Total Spreading

Partial Spreading

Figure 3: Time cost (ms) per inner linear iteration for the problem size of
262144 dof per core.

significant as the topology of network becomes complicated. On the other
hand, in the smaller problem (Figure 2), the communication can not be over-
lapped by the computation even at 4 nodes as well as 16 nodes. However,
by multiplying the number of iterations, the factors of increase in time are
still acceptable to scale up the work.

5.3 Expand to multiphase problems

The results for number of iterations and the time costs reveal the fact that
performance does not go down by adding one more phase from the two phase
problems (see [4]). As the system of each phase is independent to each other
in (18), the algorithm can be expanded to multiphase problems by adding
the same block matrix in the block diagonal form. Meanwhile, the solving
procedures do not have big difference among phases, even between total
and partial spreading the average execution time per iteration are almost
the same. All above combined with multiple right-hand-side methods will
provide an improved algorithm for multiphase problems.

6 Conclusions

The scaling behavior of our test implementation demonstrates that our ap-
proach can utilize modern clusters. This shows promise for solving the large

16

problems that originate from real world scenario where such big clusters are
required for computing results in reasonable time. Further, when compar-
ing the behavior of our implementation to a previous implementation of the
two-phase problem, we see similar behavior which indicates that this can be
extended to multi-phase problems with more than three phases, provided
that the approximation A0 of the Jacobian A preserves its good quality.

Acknowledgement

The computations were performed on resources provided by SNIC through
Uppsala Multidisciplinary Center for Advanced Computational Science (UPP-
MAX) under project p2009040.

References

[1] Uppsala multidisciplinary center for advanced computational science.
http://www.uppmax.uu.se/.

[2] The deal.ii libray. http://www.dealii.org/, 2013.

[3] The trilinos libray. http://trilinos.sandia.gov/, 2013.

[4] Owe Axelsson, Petia Boyanova, Martin Kronbichler, Maya Neytcheva,
and Xunxun Wu. Numerical and computational efficiency of solvers
for two-phase problems. Computers & Mathematics with Applications,
65(3):301–314, 2013.

[5] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kro-
nbichler. Algorithms and data structures for massively parallel generic
adaptive finite element codes. ACM Transactions on Mathematical Soft-
ware (TOMS), 38(2):14, 2011.

[6] Petia T Boyanova, Minh Do-Quang, and Maya Neytcheva. Efficient
preconditioners for large scale binary Cahn-Hilliard models. Comput.
Meth. in Appl. Math., 12(1):1–22, 2012.

[7] Franck Boyer and Céline Lapuerta. Study of a three component Cahn-
Hilliard flow model. ESAIM: Mathematical Modelling and Numerical
Analysis, 40(04):653–687, 2006.

[8] Charles M Elliott, Donald A French, and FA Milner. A second order
splitting method for the Cahn-Hilliard equation. Numerische Mathe-
matik, 54(5):575–590, 1989.

17

