




Abstract

In this report we look at a portfolio consumption optimization problem with a

stochastic market price of risk. We go through a previously published proof of op-

timality in detail and then see how this depends on the assumption of a complete

market. Some technical problems are identified and a more general problem of predic-

tion of prices on an incomplete market is addressed. We look at an example model of

an incomplete market and recite a theoretical result regarding the ambiguity of prices

thereon. To this theoretical result we add a numerical investigation of the impact

of this ambiguity in practice. We run Monte-Carlo simulations on a restricted set of

reasonable parameter values and interpret the results.
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1 Introduction

A classical problem of interest in quantitative finance is the investors problem, where

the task is to find an investment strategy so that the expected utility of the investor is

maximal. Many different formalizations of this problem has been studied during the

last decades, starting with the work of Merton in [6, 7].

The common way to model the problem is to assume a set of risky assets, usually

thought of as stocks, along with a riskless asset, usually thought of as a bond. Then

one defines a wealth process that for each time corresponds to the value of the assets

owned by the investor at that time. This process is most often required to be self

financing, not demanding the investor put more money into it. Lastly comes the

tricky question of defining investor utility from the investment. This is usually done

via two means. The first is to define a consumption function specifying how much

value is extracted from the portfolio, and then defining a function of the consumption,

called the running pay-off that is integrated over time to yield investor utility from

the consumption. The other approach is applicable in case we are considering the

problem with a finite (possibly stochastic) time horizon and define a final pay-off

function, sometimes called bequest, giving an investor utility based on the wealth

process at the final time. It is also common to combine utility from both consumption

and final wealth as we shall see later.

Having formalized the problem as above one usually applies dynamic programming

methods from stochastic optimization to get a partial differential equation, called the

Hamilton-Jacobi-Bellman (HJB) equation , describing the optimal utility along with

the corresponding optimal portfolio and consumption. The important thing to note

here is that while it is often straightforward to show that if a portfolio-consumption

pair gives optimal expected utility then it must satisfy the HJB equation, showing the

opposite can be quite complicated. This is unfortunate since in practice the interesting

step is when the investor might get a solution to the equation but would not know

wether it actually is optimal or not.

While there are verification theorems for simple market models, it is important from a

practical point of view to see if this can also be proved for more realistic models. One

such attempt at a realistic model can be found in the article by Honda and Kamimura

[3] which we will consider more closely. In [3] they note that empirical studies hava

found that the market price of risk is stochastic and time varying, and then proceed

to prove verification under certain conditions in a model where the market price of

risk is modeled by a linear Gaussian process.

One important assumption in [3] is that the market is complete, i.e. for any price
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process deriving its value from the assets on the market we can construct a self financ-

ing portfolio so they have the same price with probability one. We say that we are

replicating the process. Since the price process can be replicated, its value will be de-

termined by the prices of the assets on the market, as these determine the price of the

replicating portfolio. In reality this assumption can be questioned as most real mar-

kets seem not to be complete. One way to look at completeness is that if a market has

more ”sources of randomness” than traded assets then the market will be incomplete.

It is not difficult to imagine that the number of factors that go into determining the

values of assets on a stock market can be larger than the number of assets. However

working with incomplete market models puts severe limits on what can be said about

the market and the pricing of assets thereon. For a simple introduction to incomplete

markets see [2], Chapter 15.

In Section 2 of this report we will take a thorough look into the article [3]. The

model is presented in its entirety and the investors problem is formulated. Then the

corresponding Hamilton-Jacobi-Bellman equation is derived and simplified to admit

a conjectured solution. This explicit solution can then be used to prove a verification

theorem. Here we differ from the approach in [3] and the proofs have been slightly

reformulated to first prove a general theoretical theorem that is then used to prove two

other more applicable results. In Section 3 we look at some of the problems caused if

the market is no longer assumed to be complete and Section 4 concludes the report.

2 A dynamic Portfolio-Consumption Problem with

stochastic price of risk

2.1 The market model and the investor problem

Assume we have a complete probability space (⌦,F , P ) and that on this we have a

K-dimensional standard Brownian motion B(t), where t 2 [0, T ]. Here we let F
t

be

the filtration �(B(s); 0 < s < t), t 2 (0, T ).

We let the market price of risk be described by the process X = (X1, . . . , XK

) that

satisfies the stochastic differential equation

dX(t) = µX

(X(t))dt+ �XdB(t)

X(0) = x 2 RK ,

where µX

(x) = �Mx,  2 RK , M 2 RK⇥K , and �X 2 RK⇥K .

The market will have one riskless asset and K risky assets. Let the price of the riskless
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asset be denoted by S0 and have the dynamics

dS0(t) = r(X(t))S0(t)dt, S0(0) = 1,

where r : RK ! R is given by r(x) = r0 + rT1 x +

1
2x

T r2x, r1 2 R, r1 2 RK and

r2 2 RK⇥K is positive semidefinite.

We denote the price of the risky assets of our market model as S = (S1, . . . , SK

) and

let S be described by the stochastic differential equations

dS
i

(t) = S
i

(t)µS

i

(X(t))dt+ S
i

(t)
P

K

j=1 �
S

ij

(X(t))dB
j

(t)

S
i

(0) = s
i

> 0

for i = 1, . . . ,K. Here �S

(x) = (�S

ij

)1i,jK

is a function from RK to RK⇥K such

that ⌃

S

(x) := �S

(x)(�S

(x))T is positive definite for all x 2 RK . From the definition

of market price of risk we have that X = ✓(X) := (�S

(X))

�1
(µS

(X) � r(X)1),

1 = (1, . . . , 1) 2 RK , so we get that µS

(x) = r(x)1+ �S

(x)x, x 2 RK .

Now we want to find an optimal portfolio-consumption strategy for an investor with

power-utility. Denote the investors holdings of units of riskless assets at time t by

⌘0(t) and units of the i:th risky asset at time t by ⌘
i

. Then the investors wealth W (t)

at time t will be

W (t) =

KX

i=0

⌘
i

(t)S
i

(t)

and if c(t) is the investors consumption rate at time t the portfolio-consumption pair

(⌘, c) = (⌘0, . . . , ⌘K , c) will be self-financing if

dW (t) =
KX

i=0

⌘
i

(t)dS
i

(t)� c(t)dt.

We also assume there is an initial wealth w0 > 0 such that W (0) = w0. To simplify

the equations we look at the fraction of wealth �
i

(t) invested in the i:th asset at time

t, i.e.

�
i

(t) :=

8
<

:
⌘
i

(t)S
i

(t)/W (t), W (t) 6= 0

0, W (t) = 0

�0(t) :=

8
<

:
1�PK

i=1 �i

(t), W (t) 6= 0

0, W (t) = 0

Furthermore we define the following classes of stochastic processes

L1
(t0, t1) :=

⇢
f : ⌦⇥ [t0, t1] ! R

���P
✓Z

t1

t0

|f(t)|dt < 1
◆

= 1

�

L2
(t0, t1) :=

⇢
f : ⌦⇥ [t0, t1] ! RK

���P
✓Z

t1

t0

||f(t)||2dt < 1
◆

= 1

�

and say that (�, c) is a portfolio-consumption strategy on [t0, t1] if � 2 L2
(t0, t1),

c 2 L(t0, t1), c(t) � 0 and W (t) � 0 8t 2 [t0, t1], where W is the wealth process cor-

responding to (�, c) in the above way. The set of all portfolio-consumption strategies

on [t0, t1] is denoted by H(t0, t1).
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Using the above formula for � we see that �0(t) = ⌘0S0(t)/W (t) and using the dy-

namics for S the dynamics of W can be written as

dW (t) = ⌘0(r(X(t))S0(t)dt)� c(t)dt

+

KX

i=1

⌘
i

(t)

0

@S
i

(t)µS

i

(X(t))dt+ S
i

(t)

KX

j=1

�S

ij

(X(t))dB
j

(t)

1

A

= W (t)
⌘0(t)S0(t)

W (t)
r(X(t))dt� c(t)dt

+ W (t)

KX

i=1

⌘
i

(t)S
i

(t)

W (t)
µS

i

(X(t))dt+W (t)

KX

i=1

KX

j=1

⌘
i

(t)S
i

(t)

W (t)
�S

ij

(X(t))dB
j

(t)

= W (t)
�
1� �(t)T1

�
r(X(t))dt� c(t)dt

+ �(t)TµS

(X(t))dt+W (t)�(t)T�S

(X(t))dB(t)

= W (t)
⇥
�(t)T (µS

(X(t))� r(X(t))1) + r(X(t))
⇤
dt

+ W (t)�(t)T�S

(X(t))dB(t)� c(t)dt.

To simplify the calculations we introduce ⇡(t) := (�S

(X(t)))T�(t) and remember that

✓(X(t)) = (�S

(X(t)))�1
(µS

(X(t))� r(X(t))1), since this gives

dW (t) = W (t)
⇥
⇡(t)T ✓(X(t)) + r(X(t))

⇤
dt+W (t)⇡(t)T dB(t)� c(t)dt.

Thus instead of (�, c) we will see (⇡, c) as a portfolio-consumption strategy.

We assumed that our investor had power-utility, i.e. the investors expected utility

function is

J(t, w, x;⇡, c) = Et,w,x

"Z
T

t

c(u)1��

1� �
du+

W (T )1��

1� �

#
,

where we use the notation Et,w,x

[ · ] = E[ · |W (t) = w,X(t) = x]. If we let A
�

(t0, t1) ⇢
H(t0, t1) denote the set of admissible strategies, we can define the optimal utility

function as

V (t, w, x) = sup

(⇡,c)2A�(t,T )
J(t, w, x;⇡, c)

and then the investors problem is to find an optimal portfolio-consumption strategy

(⇡⇤, c⇤) such that V (t, w, x) = J(t, w, x;⇡⇤, c⇤). To find candidates for this we can use

dynamic programming principle to find a Hamilton-Jacobi-Bellman equation describ-

ing V and (⇡, c). To do this we first need to find the dynamics for V (t,W (t), X(t))

and for this we use Itô’s lemma:

Lemma 1 (Itô). If Y : ⌦ ⇥ [t0, t1] ! RN is an Itô process with dynamics dY (t) =

µ(t)dt+�(t)dB(t) then for a suitably differentiable function f : [t0, t1]⇥RN ! R there

holds

d(f(t, Y (t))) =

✓
f
t

(t, Y (t)) + hµ(t), f
x

(t, Y (t))i+ 1

2

h�(t)�(t)T , f
xx

(t, Y (t))i
◆
dt

+ hf
x

(t, Y (t)),�(t)dB(t)i.
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Here we use the Frobenius product defined for two matrices A = [a
ij

] and B = [b
ij

]

of the same dimension as hA,Bi =P
ij

a
ij

b
ij

= tr[ABT

].

To use this for f = V we take as Y (t) = (W (t), X1(t), . . . , XK

(t))T , and if we let

µW

(t) = W (t)
⇥
⇡(t)T ✓(X(t)) + r(X(t))

⇤ � c(t) and �W

(t) = W (t)⇡(t)T we get that

dW (t) = µW

(t)dt+ �W

(t)dB(t) and then µ(t) = (µW

(t), µX

1 (t), . . . , µX

K

(t))T and

�(t) =

0

BBBBBB@

�W

1 (t) . . . �W

K

(t)

�X

11 . . . �X

1K

...
. . .

...

�X

K1 . . . �X

KK

1

CCCCCCA
.

This gives us that

dV =

⇣
V
t

+ µW

(t)V
w

+ hµX

(t), V
x

i

+

1

2

(�W

(t)(�W

(t))TV
ww

+ h�W

(t)(�X

)

T , V T

wx

i

+ h�X

(�W

(t))T , V
wx

i+ h�X

(�X

)

T , V
xx

i)
⌘
dt

+ V
w

�W

(t)dB(t) + hV
x

,�XdB(t)i,

where V and all its partial derivatives are evaluated at (t,W (t), X(t)). Plugging in

the expressions for µW

(t) and �W

(t) and setting ⌃

X

:= �X

(�X

)

T we get

dV =

�
V
t

+ (W (t)
⇥
⇡(t)T ✓(X(t)) + r(X(t))

⇤� c(t))V
w

+ µX

(t)TV
x

+

1

2

(W (t)2||⇡(t)||2V
ww

+W (t)⇡(t)T (�X

)

TV
wx

+ W (t)(�X

(⇡(t)T )T )TV
wx

+ tr[⌃XV T

xx

])

�
dt

+ W (t)V
w

⇡(t)T dB(t) + V T

x

�X

(dB(t)

=

�
V
t

+W (t)
⇥
⇡(t)T ✓(X(t)) + r(X(t))

⇤
V
w

� c(t)V
w

+ µX

(t)TV
x

+

1

2

W (t)2||⇡(t)||2V
ww

+W (t)(�X⇡(t))TV
wx

+ 1/2tr[⌃XV T

xx

]

◆
dt

+ W (t)V
w

⇡(t)T dB(t) + V T

x

�XdB(t)

and with this in mind we define the differential operator

D⇡,cG(t, w, x) = G
t

+ w
⇥
⇡T ✓(x) + r(x)

⇤
G

w

� cG
w

+ µX

(t)TG
x

+ 1/2w2||⇡||2G
ww

+ w(�X⇡)TG
wx

+ 1/2tr[⌃XGT

xx

].

2.2 The Hamilton-Jacobi-Bellman equation

Here we derive a HJB equation for our investor problem through the means of dynamic

programming. This is well known method and can be found in many texts on the

subject, see e.g. [2], Chapter 19.
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Theorem 2. If there exists an optimal portfolio-consumption pair (⇡⇤, c⇤) and the

corresponding value function V is of class C1,2, then G(t, w, x) = V (t, w, x) satisfies

the following Hamilton-Jacobi-Bellman equation

sup

⇡2RK
,c�0

⇢
c1��

1� �
+D⇡,cG(t, w, x)

�
= 0

with boundary condition

G(T,w, x) =
w1��

1� �
.

Proof. Let (t, x) 2 [0, T )⇥RK be fixed an chose h > 0 such that t+h < T . Assume we

use an arbitrary portfolio-consumption strategy (⇡, c) in the time interval [t, t+h] and

then switch to the optimal control (⇡⇤, c⇤) in (t+h, T ]. Denote this new concatenated

control law as (⇡ ⇤ ⇡⇤, c ⇤ c⇤). Then we get that the expected utility becomes

J(t, w, x;⇡ ⇤ ⇡⇤, c ⇤ c⇤) = Et,w,x

"Z
t+h

t

c(u)1��

1� �
du+

Z
T

t+h

c⇤(u)1��

1� �
du+

W (T )1��

1� �

#

= Et,w,x

"Z
t+h

t

c(u)1��

1� �
du+ Et+h,W (t+h),X(t+h)

"Z
T

t+h

c⇤(u)1��

1� �
du+

W (T )1��

1� �

##

= Et,w,x

"Z
t+h

t

c(u)1��

1� �
du+ V (t+ h,W (t+ h), X(t+ h))

#
.

Here we can express V with Itô’s lemma as

V (t+ h,W (t+ h), X(t+ h)) = V (t, w, x) +

Z
t+h

t

D⇡(u),c(u)V (u,W (u), X(u))du

+

Z
t+h

t

�
W (u)V

w

⇡(u)T + V T

x

�X

�
dB(u).

Since the first term is deterministic and the last term is an Itô integral, hence a

martingale, we get that

J(t, w, x;⇡ ⇤ ⇡⇤, c ⇤ c⇤) = V (t, w, x)

+ Et,w,x

"Z
t+h

t

✓
c(u)1��

1� �
+D⇡(u),c(u)V (u,W (u), X(u))

◆
du

#
.

We note that there holds J(t, w, x;⇡ ⇤ ⇡⇤, c ⇤ c⇤) � V (t, w, x)  0 with equality for

(⇡, c) = (⇡⇤, c⇤). Hence if we divide by h and take the limit as h goes to zero we

obtain that

0 � lim

h!0
Et,w,x

2

4
R
t+h

t

⇣
c(u)1��

1��

+D⇡(u),c(u)V (u,W (u), X(u))
⌘
du

h

3

5

= Et,w,x


c(t)1��

1� �
+D⇡(t),c(t)V (t,W (t), X(t))

�
=

c(t)1��

1� �
+D⇡(t),c(t)V (t, w, x)

) c(t)1��

1� �
+D⇡(t),c(t)V (t, w, x)  0

10



again with equality for (⇡, c) = (⇡⇤, c⇤), proving the HJB equation. For the boundary

condition we see that

V (T,w, x) = sup

(⇡,c)2A�(T,T )
ET,w,x

"Z
T

T

c(u)1��

1� �
du+

W (T )1��

1� �

#

= sup

⇡2RK
,c�0

ET,w,x


w1��

1� �

�
=

w1��

1� �
.

The HJB-equation is written as a supremum and so is not immediately useful to us,

but since the expression is continuously differentiable in ⇡ and c we can write down

the first order conditions for a maximum in (⇡⇤, c⇤):

r
⇡

✓
c1��

1� �
+D⇡,cG(t, w, x)

◆ ����
⇡

⇤
= w✓(x)G

w

+ w2⇡⇤G
ww

+ w(�X

)

TG
wx

= 0

) ⇡⇤
= � G

w

wG
ww

✓(x)� (�X

)

TG
wx

wG
ww

@

@c

✓
c1��

1� �
+D⇡,cG(t, w, x)

◆ ����
c

⇤
= (c⇤)�� �G

w

= 0

) c⇤ = G�1/�
w

.

With these candidates for optimal portfolio-consumption (⇡⇤, c⇤) we can write the

HJB-equation as

0 =

(c⇤)1��

1� �
+D⇡

⇤
,c

⇤
G(t, w, x)

=

G
��1
�

w

1� �
+G

t

� G2
w

G
ww

||✓(x)||2 � G
w

G
ww

(�X✓(x))TG
wx

+ wr(x)G
w

�G
��1
�

w

+ µX

(t)G
x

+

1

2

w2

✓
G2

w

w2G2
ww

||✓(x)||2 + 2

G
w

✓(t)T (�X

)

TG
wx

w2G2
ww

+

||(�X

)

TG
wx

||2
w2G2

ww

◆
G

ww

� G
w

G
ww

(�X✓(x))TG
wx

� 1

G
ww

GT

wx

�X

(�X

)

TG
wx

+

1

2

tr[⌃XG
xx

]

= G
t

� 1

2

G2
w

G
ww

||✓(x)||2 � G
w

G
ww

(�X✓(x))TG
wx

+ wr(x)G
w

+ µX

(t)G
x

� 1

2

1

G
xx

||(�X

)

tG
wx

||2 + 1

2

tr[⌃xG
xx

] +

�

1� �
G

��1
�

w

(1)

The above equation is a non-linear but fortunately there is one more simplification

that can be made. The following is a standard result, see e.g. [7].

Lemma 3. For the value function we have that

V (t,�w, x) = �1��V (t, w, x)
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Proof. Let W be a solution to
8
<

:
dW (u) = W (u)[⇡(u)T ✓(X(u)) + r(X(u))]du+W (u)⇡(u)T dB(u)� c(u)du

W (t) = w.

Then we have that W 0
(u) := �W (u) is a solution to

8
<

:
dW 0

(u) = W 0
(u)[⇡(u)T ✓(X(u)) + r(X(u))]du+W 0

(u)⇡(u)T dB(u)� c0(u)du

W 0
(t) = w0.

where c0(u) = �c(u) and w0
= �w. In particular we see that if c is admissible then c0

is admissible. Given " > 0 we can fix t, w, x and choose (⇡, c) such that

V (t, w, x)  J(t, w, x;⇡, c) + ".

Furthermore, we see that

V (t,�w, x) � J(t,�w, x;⇡,�c)

= J(t, w0, x;⇡, c0)

= Et,w

0
,x

"Z
T

t

c0(u)1��

1� �
du+

W 0
(T )1��

1� �

#

= �1��Et,w,x

"Z
T

t

c(u)1��

1� �
du+

W (T )1��

1� �

#

= �1��J(t, w, x;⇡, c)

� �1��

(V (t, w, x)� ").

Hence, we get

V (t,�w, x) � �1��

(V (t, w, x)� ").

Now taking the above inequality and changing � to ��1 and w to �w we get

V (t, w, x) � ���1
(V (t,�w, x)� ")

and the two inequalities taken together give

�1��V (t, w, x)� �1��"  V (t,�w, x)  �1��V (t, w, x) + ".

Since " can be taken arbitrarily close to zero we get the desired equality.

Having the above Lemma we can now define a new function

f(t, x) := ((1� �)V (t, 1, x))
1/�

,

which gives us that

V (t, w, x) =
w1��

1� �
f(t, x)� .

12



Note that this is well defined because V (t, w, x) � 0 from the fact that c(t) � 0 and

W (t) � 0 for all t, w, x.

With this separation in the value function we can let G(t, w, x) = V (t.w.x)w
1��

1��

f(t, x)�

in equation (1). We get the partial derivatives

G
t

=

�

1� �

✓
w

f(t, x)

1��

f
t

(t, x)

◆
G

x

=

�

1� �

✓
w

f(t, x)

1��

f
x

(t, x)

◆

G
w

=

✓
f(t, x)

w

◆
�

G
ww

= � �

w

✓
f(t, x)

w

◆
�

G
wx

=

�

f(t, x)

✓
f(t, x)

w

◆
�

f
x

(t, x)

G
xx

=

�

1� �

✓
f(t, x)

w

◆1��

f
xx

(t, x)� �

f(t, x)

✓
f(t, x)

w

◆1��

f
x

(t, x)f
x

(t, x)T

= �

✓
f(t, x)

w

◆1��

✓
f
xx

(t, x)

1� �
� f

x

(t, x)f
x

(t, x)T

f(t, x)

◆

If we let ⇧ =

f(t,x)
w

we can rewrite equation (1) as

0 =

�

1� �
⇧

��1f
t

� 1

2

⇧

2�

✓
�w

�

◆
⇧

�� ||✓(x)||2 �⇧

�

✓
�w

�

◆
⇧

��✓(x)T (�X

)

T

�

f
⇧

�f
x

+ wr(x)⇧�

+ µX

(x)T
�

1� �
⇧

��1f
x

� 1

2

✓
�w

�

◆
⇧

��

✓
�

f
⇧

�

◆2

||(�X

)

T f
x

||2

+

1

2

�⇧��1

✓
1

1� �
tr[⌃Xf

xx

]� 1

f
tr[�X

(�X

)

T f
x

fT

x

]

◆
+

�

1� �
⇧

��1

and after multiplying by 1��

�

⇧

1�� we obtain

0 = f
t

+

1

2

1� �

�2
||✓(x)||2f +

1� �

�
✓(x)T (�X

)

T f
x

+

1� �

�
r(x)f + µX

(x)T f
x

+

1

2

(1� �)
1

f
||(�X

)

T f
x

||2

+

1

2

tr[⌃Xf
xx

]� 1

2

(1� �)
1

f
tr[�X

(�X

)

T f
x

fT

x

] + 1.

We note that tr[�X

(�X

)

T f
x

fT

x

] = fT

x

�X

(�X

)

T f
x

= ||(�X

)

T f
x

||2 and rearrange the

terms, which leads to

0 = f
t

+

✓
1� �

�
✓(x)T (�X

)

T

+ µX

(x)T
◆
f
x

+

1

2

tr[⌃Xf
xx

]

+

✓
1� �

2�2
||✓(x)||2 + 1� �

�
r(x)

◆
f + 1, (2)

and furthermore we get that the boundary condition form the HJB-equation gives

that f(T, x) = 1. This is a linear PDE and the solution is conjectured to be

f(t, x) =

Z
T

t

exp

✓
↵(u) + �(u)Tx+

1

2

xT ⇣(u)x

◆
du

+ exp

✓
↵(t) + �(t)Tx+

1

2

xT ⇣(t)x

◆

13



where ⇣(t) is a symmetric matrix for all t, and the boundary condition then becomes

↵(T ) = 0, �(T ) = 0 and ⇣(T ) = 0. We get the following partial derivatives

f
t

(t, x) = � exp

✓
↵(t) + �(t)Tx+

1

2

xT ⇣(t)x

◆

+ exp

✓
↵(t) + �(t)Tx+

1

2

xT ⇣(t)x

◆✓
↵̇(t) + ˙�(t)Tx+

1

2

xT

˙⇣(t)x

◆

f
x

(t, x) =

Z
T

t

exp

✓
↵(u) + �(u)Tx+

1

2

xT ⇣(u)x

◆
(�(u) + ⇣(u)x) du

+ exp

✓
↵(t) + �(t)Tx+

1

2

xT ⇣(t)x

◆
(�(t) + ⇣(t)x)

f
xx

(t, x) =

Z
T

t

exp

✓
↵(u) + �(u)Tx+

1

2

xT ⇣(u)x

◆

�
(�(u) + ⇣(u)x)(�(u) + ⇣(u)x)T + ⇣(u)

�
du

+ exp

✓
↵(t) + �(t)Tx+

1

2

xT ⇣(t)x

◆�
(�(t) + ⇣(t)x)(�(t) + ⇣(t)x)T + ⇣(t)

�

and for convenience we introduce the notion E(t, x) = exp

�
↵(t) + �(t)Tx+

1
2x

T ⇣(t)x
�
.

Substituting this into equation (2) along with µX

(x) =  � Mx, ✓(x) = x and

r(x) = r0 + rT1 x+

1
2x

T r2x gives us

0 = �E(t, x) + E(t, x)

✓
↵̇(t) + ˙�(t)Tx+

1

2

xT

˙⇣(t)x

◆

+

✓
1� �

�
�Xx+ �Mx

◆
T

 Z
T

t

E(u, x)(�(u) + ⇣(u)x)du+ E(t, x)(�(t) + ⇣(t)x)

!

+

✓
1� �

2�2
xTx+

1� �

�
(r0 + rT1 x+

1

2

xT r2x)

◆ Z
T

t

E(u, x)du+ E(t, x)

!

+

1

2

tr

⌃

X

Z
T

t

E(u, x)
�
�(u)�(u)T + ⇣(u)x�(u)T

+ �(u)(⇣(u)x)T + ⇣(u)xxT ⇣(u)T + ⇣(u)
�
du

�

+

1

2

tr
⇥
⌃

XE(t, x)
�
�(t)�(t)T + ⇣(t)x�(t)T + �(t)(⇣(t)x)T + ⇣(t)xxT ⇣(t)T + ⇣(t)

�⇤

= E(t, x)

✓
�1 + ↵̇(t) + ˙�(t)Tx+

1

2

xT

˙⇣(t)x (3)

+ T�(t) +
1� �

�
r0 +

1

2

�(t)T⌃X�(t) +
1

2

tr[⌃X⇣(t)]

+ �(t)T
✓
1� �

�
�X �M

◆
x+ T ⇣(t)x+

1� �

�
rT1 x+ 2(⇣(t)⌃X�(t))Tx

+ xT

✓
1� �

�
�X �M

◆
⇣(t)x+

1� �

2�2
xT I

k

x+

1� �

2�
xT r2x+

1

2

xT ⇣(t)⌃X⇣(t)x

◆
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+

Z
T

t

E(u, x)

✓
T�(u) +

1� �

�
r0 +

1

2

�(u)T⌃X�(u) +
1

2

tr[⌃X⇣(t)]

+ �(u)T
✓
1� �

�
�X �M

◆
x+ T ⇣(u)x+

1� �

�
rT1 x+ 2(⇣(u)⌃X�(u))Tx

+ xT

✓
1� �

�
�X �M

◆
⇣(u)x+

1� �

2�2
xT I

K

x+

1� �

2�
xT r2x+

1

2

xT ⇣(u)⌃X⇣(u)x

◆
du,

where I
K

is the K-dimensional identity matrix. Now by letting

H(t, x) = E(t, x)

✓
↵̇(t) + ˙�(t)Tx+

1

2

xT

˙⇣(t)x

+ T�(t) +
1� �

�
r0 +

1

2

�(t)T⌃X�(t) +
1

2

tr[⌃X⇣(t)]

+ �(t)T
✓
1� �

�
�X �M

◆
x+ T ⇣(t)x+

1� �

�
rT1 x+ 2(⇣(t)⌃X�(t))Tx

+ xT

✓
1� �

�
�X �M

◆
⇣(t)x+

1� �

2�2
xT I

K

x

+

1� �

2�
xT r2x+

1

2

xT ⇣(t)⌃X⇣(t)x

◆

and differentiating equation (3) with respect to time we simply get that @

@t

H(t, x) =

H(t, x), hence H(t, x) = C(x)et. Unfortunately this equation does not seem to be

uniquely solvable, but since we are only looking for one solution we can choose the

solution H(t, x) = 0. Looking at different ”powers” of x in the expression for H(t, x)

we see that for H(t, x) = 0 to be true we must have that

˙⇣(t) = �⇣(t)⌃X⇣(t)� 2

✓
1� �

�
�X �M

◆
⇣(t)� 1� �

�

✓
1

�
I
K

+ r2

◆
(4)

˙�(t) = �⇣(t)⌃X�(t)� ⇣(t)�
✓
1� �

�
�X �M

◆
T

�(t)� 1� �

�
r1 (5)

↵̇(t) = �1

2

�(t)T⌃X�(t)� �(t)T� 1

2

tr[⌃X⇣(t)]� 1� �

�
r0. (6)

Here equation (4) is the well known Riccati equation and we see that if there exists a

solution to this equation then the solutions to equations (5) and (6) also exists since

these are then linear ordinary differential equations.

The Riccati equation will not always be solvable and for choices of parameters and

for a more thorough discussion the reader is referred to [3], where it is also stated

that if � > 1 then there always exists a solution to equation (4). If the equation is

solvable then ↵(t), �(t) and ⇣(t) can be plugged into the formula for f(t, x) yielding

the following solution to the HJB equation

G(t, w, x) =

w1��

1� �
f(t, x)� (7)

⇡⇤
(t) = � G

w

wG
ww

✓(x)� (�X

)

TG
wx

wG
ww

����
w=W

⇤(t),x=X(t)

=

1

�
X(t) +

(�X

)

T f
x

(t,X(t))

f(t,X(t))
(8)
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c⇤(t) = G�1/�
w

���
w=W

⇤(t),x=X(t)

=

W ⇤
(t)

f(t,X(t))
(9)

where W ⇤ is the wealth process for the portfolio-consumption pair (⇡⇤, c⇤).

2.3 Verification theorems

We will now turn to the question of whether the expressions derived in equations (7),

(8) and (9) actually solve the original investors problem. For this we will repeatedly

use the following functions

E(t, g) := exp

⇢Z
t

0
g(u)T dB(u)� 1

2

Z
t

0
||g(u)||2du

�

g⇡,c(s) =

Z
s

t

c(u)1��

1� �
du+G(s,W (s), X(s)), s 2 [t, T ]

and

h⇡,c

(s) =


(1� �)⇡(s) + �

(�X

)

T f
x

(s,X(s))

f(s,X(s))

�
G(s,W (s), X(s))

g⇡,c(s)
.

The proof of the verification theorems will depend on the following result.

Lemma 4. If g(t) = g̃(t,X(t)), where g̃ : [0, T ]⇥RK ! RK satisfies the linear growth

condition, i.e. there exists a constant k > 0 such that ||g̃(t, x)||  k(1 + ||x||), then

E(t, g) is a martingale, i.e. Et,w,x

[E(T, g)] = E(t, g).

The above lemma is derived as in Bensoussan [1], Lemma 4.1.1, or Lipster and Shiryaev

[5]. The theorems and corrolaries in the remainder of this section were first proved in

[3] but are given here in a slightly reformulated way.

Theorem 5 (Verification). Let

A
�

(t, T ) = {(⇡, c) 2 H(t, T ) : E(t, h⇡,c

) is a martingale} .

If there exists a solution to (4) on [0, T ] then the function G defined by (7) satisfies

G = V and (⇡⇤, c⇤) defined by (8) and (9) is an optimal portfolio-consumption strategy.

Proof. We begin by showing that (⇡⇤, c⇤) is admissible. First we see that E(t, h⇤
) is a

martingale since

h⇤
(s) =


1� �

�
X(s) +

(�X

)

T f
x

(s,X(s))

f(s,X(s))

�
G(s,W (s), X(s))

g⇤(s)

and we know that ||f
x

(s, x)||  |f(s, x)| sup
t2[s,T ](|�(t)|+|⇣(t)|||x||) so ||f

x

(s, x)/f(s, x)|| 
C(1+ ||x||) for some C > 0. Since we have that g⇤(s) � G(s,W (s), X(s)) we get that

h⇤
(s) satisfies the linear growth condition and from Lemma 4 we get that

16



If W ⇤ is the wealth process for (⇡⇤, c⇤) then we get the desired result.

dW ⇤
(t) = W ⇤

(t)
⇥
⇡⇤

(t)T ✓(X(t)) + r(X(t))
⇤
dt+W ⇤

(t)⇡⇤
(t)T dB(t)� c⇤(t)dt

= W ⇤
(t)


⇡⇤

(t)T ✓(X(t)) + r(X(t))� 1

f(t,X(t))

�
dt+W ⇤

(t)⇡⇤
(t)T dB(t).

We se that

W ⇤
(t) = w0 exp

⇢Z
t

0

✓
⇡⇤

(u)T ✓(X(u)) + r(X(u))� 1

f(u,X(u))
� 1

2

||⇡⇤
(u)||2

◆
du

+

Z
t

0
⇡⇤

(u)T dB(u)

�

is a solution since Itô’s lemma yields the same stochastic differential equation and this

has a unique solution. Since both W ⇤
(t) > 0 and c⇤(t) > 0 for all t 2 [0, T ] we get

that (⇡⇤, c⇤) admissible.

To prove that G = V we use Itô’s formula on g⇡,c in the same way as in the proof of

the HJB equation and see that

dg⇡,c(s) =


c(s)1��

1� �
+D⇡,cG(s,W (s), X(s))

�
ds+

⇥
W (s)G

w

⇡(t)T +GT

x

�X

⇤
dB(s)

=


c(s)1��

1� �
+D⇡,cG(s,W (s), X(s))

�
ds

+ G(s,W (s), X(s))


(1� �)⇡(s) + �

(�X

)

T f
x

(s,X(s))

f(s,X(s))

�
T

dB(s)

=


c(s)1��

1� �
+D⇡,cG(s,W (s), X(s))

�
ds+ g⇡,c(s)h⇡,c

(s)T dB(s). (10)

If we let g⇤(s) := g⇡
⇤
,c

⇤
(s) and h⇤

(s) := h⇡

⇤
,c

⇤
(s) then we get that dg⇤(s) = g⇤(s)h⇤

(s)T dB(s)

and

g⇤(s) = G(t, w, x) exp

⇢Z
s

t

h⇤
(u)T dB(u)� 1

2

Z
s

t

||h⇤
(u)||2du

�

= G(t, w, x) exp

(Z
s

0

t

h⇤
(u)T dB(u)� 1

2

Z
s

0

t

||h⇤
(u)||2du

)

⇥ exp

⇢Z
s

s

0
h⇤

(u)T dB(u)� 1

2

Z
s

s

0
||h⇤

(u)||2du
�

= g⇤(s0)
E(s, h⇤

)

E(s0, h⇤
)

for all s, s0 2 [t, T ]. Using the boundary condition to the HJB equation we have that

g⇡,c(T ) =

Z
T

0

c(u)1��

1� �
du+

W (T )1��

1� �
.
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and this together with the assumption that E(t, h⇤
) is a martingale, gives us

V (t, w, x) = J(t, w, x;⇡⇤, c⇤)

= Et,w,x

"Z
T

0

c⇤(u)1��

1� �
du+

W ⇤
(T )1��

1� �

#

= Et,w,x

[g⇤(T )]

= Et,w,x


g⇤(t)

E(T, h⇤
)

E(t, h⇤
)

�

= G(t, w, x)
Et,w,x

[E(T, h⇤
)]

E(t, h⇤
)

= G(t, w, x).

To prove optimality we now use equation (10) together with the HJB equation which

gives

g⇡,c(s)  g⇡,c(t) +

Z
s

t

g⇡,c(u)h⇡,c

(u)T dB(u)

and in the same way as before this gives

g⇡,c(T )  g⇡,c(t)
E(T, h⇡,c

)

E(t, h⇡,c

)

.

Therefore

J(t, w, x;⇡, c) = Et,w,x

"Z
T

0

c⇤(u)1��

1� �
du+

W ⇤
(T )1��

1� �

#

= Et,w,x

[g⇡,c(T )]

 Et,w,x


g⇡,c(t)

E(T, h⇡,c

)

E(t, h⇡,c

)

�

= G(t, w, x)

which finishes the proof.

From this theorem we easily get the following corollary.

Corollary 6. Let

A
�

(t, T ) =

8
>>><

>>>:
(⇡, c) 2 H(t, T ) :

There is some function ⇡̃[t0, t1]⇥ R ! R

satisfying the linear growth condition

such that ⇡(t) = ⇡̃(t,X(t))

9
>>>=

>>>;
.

If there exists a solution to (4) on [0, T ] then the function G defined by (7) satisfies

G = V and (⇡⇤, c⇤) defined by (8) and (9) is an optimal portfolio-consumption strategy.

Proof. If (⇡, c) 2 A
�

then as before we see that h⇡,c

(s) satisfies the linear growth

condition according to lemma 4 hence E(t, h⇡,c

) is a martingale and we can use theorem

5.
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As noted in [3] the set of admissible strategies can be seen as to restrictive, since there

are no practical reasons for demanding that the portfolio grow only linearly in market

price of risk. However in the case that the investor is more risk seeking than log-utility

investors then the following theorem applies.

Theorem 7 (Verification). Assume that 0 < � < 1 and let

A
�

(t, T ) = H(t, T ).

If there exists a solution to (4) on [0, T ] then the function G defined by (7) satisfies

G = V and (⇡⇤, c⇤) defined by (8) and (9) is an optimal portfolio-consumption strategy.

Proof. It has already been shown in theorem 5 that (⇡⇤, c⇤) is admissible and that

G = V . What remains to be shown is that the strategy is optimal. As before we have

that

g⇡,c(s)  g⇡,c(t) +

Z
s

t

g⇡,c(u)h⇡,c

(u)T dB(u)

for (⇡, c) 2 A
�

(t, T ) and s 2 [t, T ]. Now we define

�(s) :=

Z
s

t

||g⇡,c(u)h⇡,c

(u)||2du

and

⌧
n

:= T ^ inf{s 2 [t, T ] : �(s) � n}, n 2 N.

We see that E[�(s)] < n for s 2 [t, ⌧
n

], so
R
s

t

g⇡,c(u)h⇡,c

(u)T dB(u) is a martingale for

s 2 [t, ⌧
n

]. From Doob’s optional stopping theorem we get

Et,w,x

[g⇡,c(⌧
n

)]  Et,w,x

[g⇡,c(t)] + Et,w,x

Z
⌧n

t

g⇡,c(u)h⇡,c

(u)T dB(u)

�

= G(t, w, x).

Now sincere have that 0 < � < 1, the utility function is bounded from below and we

can use Fatou’s lemma as follows. We have that lim

n!1 ⌧
n

= T so

J(t, w, x;⇡, c) = Et,w,x

"Z
T

0

c(u)1��

1� �
du+

W 1��

1� �

#

= Et,w,x

[g⇡,c(T )]

 lim inf

n!1
Et,w,x

[g⇡,c(⌧
n

)]

 G(t, w, x)

for all (⇡, c) 2 A
�

.
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3 Incomplete markets and problems therein

3.1 Incomplete markets model and Hamilton-Jacobi-Bellman

equation

Observing the market model in Section 2 and recalling what was said about incomplete

markets in Section 1 we see that one way of making the model incomplete is to increase

the dimension of the Brownian motion B(t) to some N > K. However we immediately

see that we can no longer calculate the market price of risk as ✓ = (�S

)

�1
(µS � r1)

since now �S is no longer invertible. So, instead, we can drop the notion of X as the

market price of risk for the time being and just increase the dimension of X to N as

well. Then we can still have that µS

(x) = r(x)1 + �S

(x)x. As a side note we see

that if ⌃S

(x) = �S

(x)(�S

(x))T is assumed to be positive definite for all x 2 RN then

⌃

S

(x) is invertible and we get that x = ((�S

(x))T�S

(x))�1
(�S

(x))T (µS

(x)�r(x)1) =

(�S

(x)⌃S

(x)�1
)

T

(µS

(x)� r(x)1), so X is still something similar to the market price

of risk in the complete model.

The rest of the model can be handled similarly as before, until we get to ⇡ = (�S

)

T�,

where we note that while ⇡ has dimension N , � has only dimension K. So we see

that not all values of ⇡ 2 RN are possible but only those in a K-dimensional subspace

Im[(�S

(x))T ] 2 RN . Now we can question if it is still more convenient to consider

⇡ rather than � since this subspace changes depending on X. Either way one will

now get that the supremum in the corresponding HJB equation is taken over a K +

1 dimensional space and the PDE is over N + 1 spacial dimension and one time

dimension. If we then proceed to simplify the equation as before we will only get

K + 1 first order conditions and this will in general be not enough to reduce the HJB

equation to a linear equation. As noted in the end of [3], the PDE corresponding to

our equation (2) becomes essentially nonlinear, and it seems impossible to derive an

explicit solution to such a PDE. As we saw in the proofs of the verification theorems

the explicit form of the conjectured solution f was crucial in obtaining an estimate on

the candidate optimal portfolio, and without this estimate it will not be possible to

prove G = V in the same way as we did for the complete market. For the nonlinear

equation it would then be necessary to prove existence of a solution f in another

way and then hopefully find a way to prove that ||f
x

/f || satisfies the linear growth

condition. This however would likely demand much more advanced methods than we

have presented here and even if successful we don’t know under what conditions it

would be true.
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3.2 Difficulties of pricing in incomplete markets

To further illustrate how difficult it can be to work with incomplete models we look

at theorem by Hubalek and Schachermayer in [4] that shows great ambiguity in the

standard Black-Scholes pricing methods applied to derivatives on assets that cannot

be traded. The method used will be the martingale method of option pricing which

is covered in [2] Chapter 10,11 and 12.

We will assume we have a probability space (⌦,F , P ) with two independent Brownian

motions B,B?. Let T be the time horizon and let (F )0tT

be the filtration generated

by (B,B?
). Also assume that F = {;,⌦} and F

T

= F . Given a constant ⇢ 2 (0, 1)

we define a new Brownian motion

˜B(t) = ⇢B(t) +
p
1� ⇢2B?

(t) for t 2 [0, T ].

Here we see that Cov[B(t), ˜B(t)] = ⇢t. Now let µ, µ̃ 2 R and r,�, �̃ > 0 be fixed and

consider the standard Black-Scholes model

dS0(t) = rS0(t)dt

dS1(t) = µS1(t)dt+ �S1(t)dB(t).

Then we get that

S0(t) = S0(0)e
rt

S1(t) = S1(0) exp(Y (t)) where Y (t) =

✓
µ� �2

2

◆
t+ �B(t).

Now we also introduce a third asset that cannot be traded

d ˜S(t) = µ̃ ˜S(t)dt+ �̃ ˜S(t)d ˜B(t)

that is
˜S(t) = ˜S(0) exp( ˜Y (t)) where ˜Y (t) =

✓
µ̃� �̃2

2

◆
t+ �̃ ˜B(t).

This nontraded asset will serve as the underlying asset for a European call option with

price process C(t), i.e. C(T ) = max(

˜S(T )�K, 0) where K > 0 is the strike price. The

idea now is that since B and ˜B are correlated with constant ⇢, close to 1, then it seems

sensible to take S1 as a traded surrogate for ˜S. Hopefully then we can approximate

the price of C using only the traded asset S1 and the bond S0. As we shall see this is

not the case though.

First we define

M(S1) :=

8
<

:Q :

Q is a probability measure on F equivalent to P,

and S1/S0 is a Q� martingale.

9
=

; .
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Theorem 8 (Habulek-Schachermayer). For any c0 2 (0,1) there is a probability

measure Q 2 M(S1) such that

c0 = e�rTE
Q

[max(

˜S(T )�K, 0)].

In particular the market {(S0(t)), (S1(t)), (C(t))}
t2[0,T ] where

C(t) = e�r(T�t)E
Q

[max(

˜S(T )�K, 0)|F
t

],

is arbitrage free.

Proof. We use Girsanov’s theorem to find a new probability measure which changes

µ to r and µ̃ to r̃ in the 2-dimensional process
2

4 dS1

d ˜S

3

5
=

2

4 µ

µ̃

3

5 dt+

2

4 � 0

⇢�̃
p
1� ⇢�̃

3

5

2

4 dB

dB?

3

5 .

We can then define a new measure Q
⌫

2 S by dQ
⌫

/dP = Z
T

, where

Z
T

= exp


�B(t) + �?B?

(t)� �2
+ (�?

)

2

2

t

�
, t 2 [0, T ]

and here we have that

�
2

4 �

�?

3

5
=

2

4 � 0

⇢�̃
p
1� ⇢�̃

3

5
�10

@

2

4 µ

µ̃

3

5�
2

4 r

r̃

3

5

1

A

=

2

4
µ�r

�

⇢(r�µ)

�

p
1�⇢

2
+

µ̃�r̃

�̃

p
1�⇢

2

3

5 .

Thus, we get a new 2-dimensional Brownian motion under Q
⌫

, namely,
2

4 B(t)� �t

B?
(t)� �?t

3

5

and the processes Y (t), ˜Y (t) are given by

X(t) =

✓
r � �2

2

◆
t+ �(B(t)� �t)

˜X(t) =

✓
r̃ � �̃2

2

◆
t+ �̃

⇣
⇢(B(t)� �t) +

p
1� ⇢2(B?

(t)� �?t)
⌘
.

If we let

⌫ = r̃ � �̃2

2

,

we see that the random variable

U
(⌫)
T

= ⇢(B(t)� �t) +
p
1� ⇢2(B?

(t)� �?t)
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is a normal random variable with mean 0 and variance T under the measure Q
⌫

. Now

we get that

E(⌫) = E
Q⌫

h
max(

˜S(T )�K, 0)
i

= E
Q⌫

h
max(

˜S(0) exp(⌫T + �̃U
(⌫)
T

)�K, 0)
i

=

Z 1

�1
max(

˜S(0) exp(⌫T + �̃
p
Tz)�K, 0)'(z)dz,

where ' is the probability density function for N (0, 1). With some elementary algebra

we can then see that

E(⌫) =

Z 1

z⌫

⇣
˜S(0)e⌫T+�̃

p
Tz �K

⌘
'(z)dz,

where

z
⌫

=

ln

K

S0
� ⌫T

�̃
p
T

.

Here we see that

lim

⌫!�1
E(⌫) = 0 and lim

⌫!1
E(⌫) = 1.

Now taking any c0 2 (0,1) we see there is ⌫� and ⌫+ such that E(⌫�) < c0 < E(⌫+).

Since the function ⌫ ! E(⌫) is continuous the mean value theorem says that there

will be ⌫⇤ 2 (⌫�, ⌫+) such that E(⌫⇤) = c0.

This theorem illustrates a fundamental problem with pricing assets in incomplete

markets. Even though we can let S1 and ˜S be arbitrarily well correlated, as long

as they are not the same there will always be a large leeway for the market to price

derivatives on ˜S.

However the above theorem only tells us about what prices are possible, which is not

necessary the same as to say the are likely. If most of the range corresponds to very

unlikely prices, it might not be a huge problem in practice. Using the formula

E(⌫) = E
Q⌫

h
max(

˜S(0) exp(⌫T + �̃U
(⌫)
T

)�K, 0)
i

and restricting to ”reasonable” values of r̃ and �̃ we can use Monte-Carlo methods to

examine the range of prices generated. Determining a reasonable range is not that

simple but here we have chosen r̃ 2 (0.5, 1.5) and �̃ 2 (0.1, 1). Normalizing the price

such that ˜S(0) = 1 we can plot the prices for different values on K. In Figure 1 we

see the range of prices in the case of the strike price K being half of the starting value

of ˜S. Here wee see that while the volatility seems to have little impact on the price,

there is quite an incline along the r̃-axis. In Figure 2 and 3 we see the prices when

K equals ˜S(0) and when K is twice as large as ˜S(0) respectively. First we can see

that there is an increasing dependence on the volatility as we take larger K. This is
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Figure 1: Option prices for ˜S(0) and K = 0.5.

natural since if we start out with the ˜S below the strike price, an increased volatility

will mean a larger chance to get over the strike price and achieve a non-zero final value

on the option. We also see that the price range seems to get slightly narrower with

increased strike price, and this is also to be expected since given any realization of ˜S

,a higher strike price will mean less profit. Overall though we see there always seems

to be a rather significant range over which the price can vary.

4 Conclusion

We have seen in Section 2 that under the assumption of complete markets there are

examples of verification theorems under otherwise quite general assumptions. Given

some decent methods for estimating the model parameters we can imagine this as

being useful certain investors of the real market. However in Section 3 we argued

that a real market will in general not be complete and the issue of completeness can

complicate the analysis.

First we had the problem regarding the Hamilton-Jacobi-Bellman equation, which in

the case of an incomplete market can no longer be reduced to a linear partial differential
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Figure 2: Option prices for ˜S(0) and K = 1.
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Figure 3: Option prices for ˜S(0) and K = 2.
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equation. The proof of verification in Section 2 relied heavily on the existence of an

explicit solution to the PDE to provide estimates on the portfolio. In the incomplete

case the resulting nonlinear equation can no longer be solved analytically and we

concluded that much more general methods must be used to examine the question of

existence and optimality of solutions to the HJB equation.

Furthermore, we saw that the problem with incompleteness is more far-reaching than

just absence of proper verification procedures. When trying to optimize a portfolio

in a market we need to be able to make good predictions on how the assets will

behave for future times. However if the market is incomplete there will always be an

ambiguity regarding pricing. Most notably we saw this in the case of a call option on

a non-tradable asset, where the option could take any value between 0 and 1. Even if

we were to prove verification, the ambiguity in pricing would still be a problem when

trying to implement the optimization in practice.
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