
Department of Information Technology

Box 337

SE-751 05 Uppsala

Sweden Project in course ”Scientific Computing, Advanced course” Dec 2013 Further information: http://www.it.uu.se/edu/course/homepage/projektTDB/ Contact: projektTDB@it.uu.se

Cache Pirating: Understanding Cache Contention

Researcher:
Ragnar Hägg
raha4459@student.uu.se

Supervisor:
Andreas Sandberg
andreas.sandberg@it.uu.se
UART

0 12MBCache size

Target

Pirate

Measurement
Interval

Measurement
Cycle

Pirate
Warmup

Target
Warmup

0 12

Fetch ratio

0%

100%

Tim
e

63 8

Method
The pirate and the target run simultaneously. The
target is stopped after each sample, which is a fix
number of instructions executed in the target. The
hardware performance counters are then used to
measure the performance of the target and monitor
the behavior of the pirate, meanwhile the pirate is
warmed for the next measurement size.

When all sizes are sampled, the pirate stops and the
target is warmed with the full cache size. The
sampling cycle is then repeated.

For specifying the the performance events the
pfm4 library is used to encode the performance
events for the Linux kernel.

The output is given in a Google Protobuf file
which can be processed or converted to a csv file
with provided Python scripts.

Result
The pirate application

uses the measured CPI of the pirate to validate that it can
keep a sufficient amount of the cache. This removes the
need for two off-core per-core counters.

is started with an easy terminal command.

automatically adjust microbenchmark parameters such as
stride and dataset size using processor information.

is verified on Westmere, Nehalem and Sandy Bridge
architectures.

Usage ./perfpirate e PFM4_PERF_EVENT_NAME sampleperiod=10000000 ./my_target_command target_options

Motivation
Today cache and off-chip bandwidth is typically shared
between cores. Since both available cache and memory
bandwidth strongly influences performance of an
application it is increasingly important to understand how
performance, such as memory bandwidth and throughput
depends on the amount of shared cache available.

Purpose
To implement a Cache Pirate (Eklöv et al.) with on-line
size adjustment under an open source license as an
easy-to-use command line application.
Hardware performance-event counters should be used for
measuring. The pirate should work on as many
architectures as possible.

mailto:raha4459@student.uu.se

	Slide 1

