UNIVERSITET

Cache Pirating

Understanding Resource Contention

Ragnar Hagg
Project in Computational Science: Report

March 2014

PROJECT REPORT

Abstract

Shared cache contention can significantly change the performance
of co-running applications on a multicore processor. There are
methods to predict the impact of this contention, but in order to use
them the applications need to be profiled. One common performance
metric used to characterize the application is the fetch ratio as a
function of the amount of cache available. A method for obtaining
such information is Cache Pirating, which steals a known amount of
cache from the target application while various performance events
are sampled with hardware performance counters. Cache Pirating
is a low-overhead method for measuring performance at runtime on
real systems. Earlier implementations of Cache Pirating have been
limited to a specific architecture, and the main aim of this project
is to make a more portable and easy-to-use implementation of the
Pirate. This has been achieved by using 1ibpfmé4 for easier hardware
counter handling and Google Protobuf for better data management.
The Pirate also automatically discovers needed system hardware
parameter from the Linux OS. The Pirate needs to self validate that
it steals the right amount of cache. Prior implementations have been
limited to a small number of microarchitectures. We introduce a new
self-validation method that is portable to most modern architectures.
The Pirate has been validated on Intel Nehalem, Westmere and Sandy
Bridge, and also tested on an AMD machine.

Contents

(1__Introductionl 1
2 Background| 2
2.1 Cache memory|l 2
2.1.1 Associativity| 2

2.1.2 Replacement policies| 3

2.2 Hardware performance counters|. 4
2.3 Understanding cache performance|. 4
2.4 Cache Pirating] 5
B__The new Piratel 7
3.1 Automatic parameter detection| 7
3.2 Performance counter attachmentl 7
B3 CPlwvalidationl 7
8.4 Data management|{ 0., 8
8.5 Workaround for non-power-of-2 way sizes| 9

4 Evaluation methodology| 9
4.1 Random access microbenchmarkl 10
4.2 Sequential access microbenchmark| 10
E3_SPECCPU20061 . . .« - o oo oee e e e e e e 11
4.4 Reference machines 0oL, 11
6_Results 12
0 D 7 12
D.2 AMDI 15

6 _Enhancements| 16
7__Usage| 16
[[1 Tnstallation] 16
7.2 Running the Pirate] 17
[(.3 Performance countersl, 18
[7.4 Common pitfallsf 18
[A_Tables of counters used| 21

[B Protobuf output structure] 22

1 Introduction

According to Moore’s law, the number of transistors (and in a simplified way,
the number of calculations per second) on a CPU chip doubles every 18 months.
This has basically been true since 1965 when it was observed by Gordon E.
Moore, co-founder of Intel. When the single core performance started to level
off in 2007 we started putting more cores on the chips, and hence Moore’s law
was still preserved. In other words the number of calculations per second are
roughly doubling every 1.5 years.

On the other side, the bandwidth from memory to the CPU is not increasing
at the same rate and access to data in main memory becomes an increasing
bottleneck. The access time to the memory is also very high relative to the
calculation time needed on a single piece of data. To deal with this increasing
gap between calculation power and memory bandwidth we have cache memory.

Cache performance is one of the most important issues in modern computers.
Since the use of multicore CPUs is a common practice today, it is important
to understand how sharing resources between cores affect performance. This
can help us make our programs, and the hardware on which the programs run,
more effective when co-running with shared resources. For example, Sandberg
et. al have proposed methods to predict performance variability due to resource
sharing effects imposed by co-running applications [1, |2]. For these methods
per-application profile data need to be acquired, such as miss rates and hit rates
as a function of cache size. Such profiles can be generated through simulations,
but these are very time consuming and simulators are difficult to build for
modern processors and memory systems.

To acquire performance profiles several techniques have been proposed by the
UART team at Uppsala University. StatCache proposed by Berg and Hagersten
[3] and StatStack proposed by Eklov and Hagersten [|4] are statistical models
to model miss ratios of fully-associative random and LRU cache hierarchies
from sparse runtime sampling. These are theoretical models based on available
knowledge on how the system behaves.

Eklov et. al proposed Cache Pirating [5] as a way of measuring performance
metrics on a target application as a function of the available shared cache on real
hardware at runtime. This is done by having the Pirate co-run with the target
while stealing cache without affecting the target noticeably in any other aspects.

Another method also proposed by Eklov et. al is the Bandwidth Bandit
[6] which uses the same technique but steals memory bandwidth instead. This
is hard because we need to know in detail how the memory in the system is
configured.

The purpose of this project is to enhance the previous implementation of
the Cache Pirate. The previous Cache Pirate implementation is limited to
Nehalem machines, and it is also designed for an obsolete performance counter
interface. The focus for this project is making the Pirate more portable to
different architectures and easier to use. The main changes done to the Cache
Pirate are:

e Use of the pfm4 library to encode performance counter information and
control performance counters using the native Linux kernel interfaces.

e Use of CPI instead of fetch ratio to validate that the Pirate is stealing
the desired amount of cache. This makes it more portable since many
architectures lack the performance counters for measuring core-specific
fetch ratios.

e Use of the Google Protobuf library for simple and efficient data handling,
which enables meta data to be included in the output file. The data can
easily be exported to C++, Java and Python.

e The Pirate automatically discovers its runtime parameters from the sysfs
filesystem on Linux.

2 Background

2.1 Cache memory

Cache memory is a fast memory that is placed on the CPU-chip close to the
core. This memory reduces the average time needed to access data in the main
memory when data is reused. It also helps to reduce the off-chip bandwidth
when data is reused or shared between different cores on the same chip. This is
done by storing a copy of the data in the cache.

To make data handling more efficient, data is split into cachelines, each
handled as one data unit. This increases the performance by exploiting spatial
locality, which helps under the assumption that if a piece of data is used, the
data next to it is very likely to be used soon.

In a similar way data in the memory is also split into pages, with the most
common size being 4 kB. This is the smallest memory unit the operating system
can allocate for a program. Pages are important for translating virtual memory
to physical memory. Virtual memory is used in order for programs to be able
to use the memory independently of what other programs are running at the
same time. A table with one entry for each active page is used to map virtual to
physical memory address.

Usually cache memory can be made faster the smaller it is, so the size of the
cache is a trade-off between latency and size. To be able to get a bit of both
worlds CPUs usually have a multi-level cache-hierarchy. Most commonly a two-
or three-level cache hierarchy is used. Figure [I] shows the setup of a two-core
CPU with a two-level cache hierarchy. There is a small but fast L1 (Level 1)
cache closest to the core. It is then connected to the bigger and shared L2 cache.
The L2 cache is slower than the L1 cache but still provides data much faster
than the main memory, and it helps performance by holding data that is more
sparsely reused or used by both cores. With this setup we get the size of the L2
cache at the same time as we increase average performance by keeping frequently
used data close to the cores in the faster L1 caches. The cost for this is physical
space on the CPU and extra power for the caches.

2.1.1 Associativity

A simple type of cache is a direct mapped one. It uses part of a memory address
as an index to decide where in the cache to put the cacheline. The rest of the
memory address is stored in the cache as a tag, along with the data, so that

CPU

Core Core

L1 cache L1 cache

I I
Shared L2 cache

Figure 1: Setup of a CPU with two cores and a 2-level cache-hierarchy.

we can check if the cacheline we are looking for is present in the cache. Each
address maps to exactly one cache-slot. So if a cache has 16 cache-slots, then
four bits of the memory address will be used as index into the cache and every
16th cacheline will compete for the same slot. The least significant bits are used
for the index, since these change more frequently, so that neighbouring cachelines
do not compete for the same slot.

If two cachelines that index into the same slot are both reused frequently
these will conflict and cause evictions. This is known as conflict misses. To deal
with this contention the cache-slots can be divided into sets of two or more ways,
where each way is a choice of slot in which the cacheline can be placed. The
address index is then used to decide which set a cacheline goes into, and it can
then be placed in either slot in the set. So if we have two slots in each set, called
a two-way set-associative cache, we can have two frequently reused cachelines
that index to the same set without any contention. The way size of a cache is
the total cache size divided by the number of ways.

The number of ways in a cache, called the associativity, is a trade-off between
performance and power consumption. The more ways the cache has, the fewer
conflict misses there will be since there will be less chance that two more
frequently used cachelines have to compete for the same cache-slot. But the
cache has to be searched every time a cacheline is accessed and the more ways
there are in a set the more address tags has to be compared with the address tag
of the accessed data. Each compare costs power and also time if the compares
are not done in parallel.

If the associativity of the cache is increased (while keeping size constant)
until the cache has only one set, then this is called a fully associative cache.
Here any cacheline can be in any cache-slot.

2.1.2 Replacement policies

Each time a new cache-line is brought into the cache a cache-line already in
the cache has to be overwritten. In a direct mapped cache this is easy since
the cache-line can only go in one slot decided by the index bits in the memory
address. As soon as there is associativity in the cache there is a need for a

replacement policy, a way to decide which cache-line to overwrite when bringing
in new a new one.

The purpose of the replacement policy is to predict which cacheline has the
lowest probability of being reused in the near future. Two simple replacement
policies are random replacement where a random cacheline is chosen to be evicted
and least-recently used (LRU) replacement which replaces the least-recently
accessed cacheline. Keeping track of which cache entry was least-recently used
can be very costly and there exist several pseudo-LRU replacement protocols
that approximate a true LRU protocol. An example of this is the pseudo-LRU
protocol used in the Intel Nehalem architecture. For every entry in the cache it
has an accessed bit, which is set when the entry is accessed. When data needs to
be evicted the accessed bits are searched and the first entry with an unset bit is
chosen for eviction. There will always be at least one unset bit. When the last
unset accessed bit is set all other are unset.

2.2 Hardware performance counters

Hardware performance counters are special-purpose registers built into the
CPU that store the count of hardware-related events in the computer. They are
originally built into the processor by the manufacturer to enable easier debugging
and performance evaluation. For example, a new branch-predictor can be
evaluated by counting the ratio of branch-prediction misses in an application and
compare this to a previous branch-predictor. Nowadays the performance counters
are also used for low-level performance analysis and tuning of applications. The
set of available performance counters vary with different architectures, and are
documented in the manuals, provided by the manufacturers.

2.3 Understanding cache performance

There are some common metrics used when analysing cache performance:

e Miss ratio: This is the proportion of the total data accesses that result in
a cache miss, i.e., the data accessed is not in the cache and will have to be
fetched from memory when the access is executed.

e Fetch ratio: This is the proportion of the total data accesses that result
in a memory fetch, i.e., the data has to be fetched from memory. This
includes fetches done by the prefetchersﬂ Is always larger or equal to the
miss ratio.

e Clycles per instruction (CPI): The average amount of cycles required for the
core to execute an instruction. Depends on for example pipeline efficiency,
memory access time and cache miss rate.

If the cache size is increased both the miss an fetch ratio should decrease in
most applications since more data can be cached hence more data can be reused.
Increasing the associativity of the cache also decreases miss and fetch ratio since
there will be less conflict misses. Decreasing the miss ratio will most probably
also decrease the CPI since the average access time to data will be lower. On
the other hand, increasing both size and associativity will increase the power
consumption as mentioned before, so this is the trade-off.

LA piece of built-in hardware that predicts what data will be used next and prefetches it to
the cache.

2.4 Cache Pirating

Cache Pirating was proposed by Eklov et. al [5] as a method to analyse cache
performance of a target application. Cache Pirating accomplishes this by ”steal-
ing” (occupying) a given amount of the last-level cache (LLC) from the target
while co-running the Pirate and the target on different cores that share LLC.
This should be done without having any other substantial impact on the target
than the amount of shared cache reduced. By doing this we can use hardware
performance counters to measure how different performance metrics for the target
depend on the amount of shared cache space available. These tests are done
on real hardware and therefore account for all effects of the memory hierarchy
while it has a low overhead and saves a lot of time compared to running the
system in a complex simulator.

The Pirate in no way restricts the target’s access to the part of the cache
that it is stealing. The target and Pirate are competing for the shared cache.
The Pirate has to keep its dataset "hot” to make sure it does not get evicted. In
an LRU cache this is done by accessing its cache-lines often enough so that they
are never the least-recently used ones. As long as the Pirate’s data never gets
evicted we know that it is stealing all the cache it is supposed to.

Occasional loss of cache-lines for the Pirate can be acceptable since the impact
of this will be marginal. If the Pirate will have to fetch data from memory too
often this will start affecting the target in two ways; the target will be using more
shared cache than it is supposed to and it will have less memory bandwidth since
the Pirate is stealing some of that to. This argument that some loss of data is
accepted is also the reason why the Pirate works with pseudo-LRU replacement.
Even if one of the Pirate’s cache-line is evicted this is okay as long as we ensure
that it is infrequent.

The Pirate needs to be monitored to make sure that it is keeping its dataset
in the cache. There have been several solutions to this problem. Eklov et. al
[5] looked at the fetch ratio of the Pirate. The Pirate is constantly accessing
its data, and as long as those accesses do not require a fetch from memory the
whole dataset must be in the cache. A problem in this approach is that it can be
hard to measure the fetch ratio from a certain core, depending on the hardware.

Another method used by Mechri [7] is based on measuring the time it takes
for the Pirate to go through its whole dataset. If the Pirate starts missing in
the cache it will start waiting for memory fetches. This will make a noticeable
change in the time it takes for the Pirate to go through its whole dataset.

The amount of cache the Pirate can steal is limited by the frequency at which
it can touch data. To increase this it is possible to run several Pirate threads.
The Pirate dataset can then be divided between Pirate threads, which allows
them to touch each piece of data more often. This can increase the amount of
cache the Pirate can steal linearly with the number threads. It will also increase
the LLC bandwidth used by the Pirate, which we have to make sure is not
saturated since the target should not be affected in any other way than the loss
of shared cache.

One way to implement the Pirate is to steal a fixed amount of cache for each

run, and then do multiple runs with different sizes to generate a performance
curve. This results in a large overhead since creating a curve for 8 cache sizes
requires the target to be run 8 times.

Another way is to implement online size adjustment where the Pirate changes
the size of its dataset during the execution. Figure [2| shows the scheduling for
the online size adjustment. Between each (performance counter) sample the
Pirate increases its dataset size. The target’s execution is paused to enable faster
warming of the Pirate. Since the target is not running during this warming
it will not throw out any of the Pirate’s data from the cache. Therefore the
warming of the Pirate will be done when the Pirate has iterated through its
whole dataset once.

When the largest size has been sampled the Pirate is set to steal no cache,
and the target warms its cache without the Pirate stealing any cache. Since the
target is doing an arbitrary task it is difficult to estimate how long the warmup
will take. A simple solution is to wait a ”long time” to be sure that it has
warmed the cache. This measurement cycle is then repeated until the target has
finished executing.

0 Cachesize 12MB
i >
T i Measurement
Pirate i : Interval
W P |

L 1 I:] Target

»C @ Pirate

Target
Warmup

Measurement
Cycle

awiL

100% :

o, : : : —
0% 0 3 6 8 12
Figure 2: Time flow of Pirate with online size adjustment to get a complete
performance metric curve in one run.

In order to make sure that the cache space available to the target acts just
like a real cache it is important that the Pirate steals cache evenly in all sets.
Therefore the Pirate should steal an amount of data that is a multiple of the way
sizeﬂ The Pirate’s dataset should also index evenly over the sets in the LLC.

With the normal size for a memory page (a couple of kilobytes) it can be
hard to make sure that a dataset is spread evenly over a all sets in the cache,
since a cacheline’s place in the cache is defined by its physical address, whereas

2The number of sets multiplied by the size of a cacheline.

the application uses virtual adresses. A typical way size can be 512 kB (8 MB
cache with 16 ways) and with 4 kB pages (address mapping granularity) this
requires 128 pages. Because the OS will place these as it likes in the memory,
there is no telling what physical address the cachelines in the data will have.
This can result in unintended conflict misses since the Pirate’s dataset might
steal more of some sets then others. This is not acceptable since it would result
in a non-uniform cache memory space for the target. It can be solved by using
huge pages (2 MB). They will always be 2 MB aligned and therefore we can know
all bits of the physical memory that will be used for the cache index function.
However, we need to explicitly request huge pages when allocating memory.

3 The new Pirate

3.1 Automatic parameter detection

In order to run the Pirate, several parameters have to be set, specifying the
hardware it’s running on. This information is available on Linux in the sysfs
filesystem. The Pirate takes this information and automatically configures itself,
which makes it more easy to use.

3.2 Performance counter attachment

To attach the counters to the processes the Pirate uses the pfm4 library. The
method for configuring these counters is complicated and pfm4 simplifies the
process. The events that are available on a machine depends on the hardware (and
the OS) and are named differently and pfm4 also helps with this by standardizing
names of performance events.

3.3 CPI validation

The CPI of the Pirate is sampled to validate if the Pirate is doing what it’s
supposed to. Relying on fetch ratio can be inconvenient to since all architectures
do not have the per-core performance counters needed to measure it. The perfor-
mance counters for cycles and instructions on the other hand have standardized
names. Using CPI is similar to looking at the time it takes for the Pirate to go
through its dataset which Mechri [7] did. The difference is that the CPI does not
depend on the size of the dataset which is convenient since this Pirate changes
the size of the dataset many times during its execution.

The Pirate does a calibration run before the target is started to get a reference
CPI. While the target is sampled the Pirate’s CPI is also sampled, and as long
as the CPI is within a small range of the reference CPI we know that the Pirate
is doing what it is supposed to. If the Pirate would start missing in the cache, it
would start having to wait for memory fetches and the CPI would increase.

When looking at the CPI we can also see if the Pirate is being affected in
other ways, e.g. through LLC bandwidth contention. If the Pirate is being
slowed down by contention from the other cores, this means that the other cores
will also be slowed down by the Pirate’s LLC traffic. Then the target is being
affected in more ways than just a decreased amount of shared cache, and the
measurement is not reliable any more. This is likelier to be the case when Pirate
threads are used.

So by looking at the CPI we can see both when the Pirate starts losing its
data from the cache and when it starts to compete with the target for other
shared resources.

3.4 Data management

The Pirate uses Google Protobuf, an automated mechanism for serializing
structured data, to make data management easier. This enables metadata to
be included in the output file, and all data can easily be accessed with C++,
Python and Java using generated source code for reading (and writing) the
Protobuf file.

The output is divided into the header with all metadata and then the
samples. The output file starts with the magic string PIRATEv1 and then there is
a uint32_t with the length of the header data in bytes. After the header follows
a list of samples. Each sample is preceded by a uint32_t with the sample length
in bytes. The content and format of the output file can be seen in the appendix
or the source file perf_pb.proto.

Along with the Pirate, the Python script pirate2csv.py is provided which
converts the Protobuf output file to a plain text csv-output with the metadata
and the sample summed up per each sample-cache-size. Below is an example of
a print-out from running ./pirate2csv.py pirate_output.pb

2097152 9976 14073 136 2333 2 190640 152070
2621440 10025 13898 152 2349 2 185852 148955
3145728 9987 13818 144 2339 2 189054 151420
3670016 9972 51267 58 2444 995 276165 220793
4194304 10004 36018 38 2534 1234 272840 217919
4718592 10017 31861 65 2776 1080 390784 311293
5242880 10007 14702 83 2714 1111 200168 160266
5767168 9968 15688 80 2588 1019 212649 170221
6291456 10011 20810 104 2724 1099 446930 357255
6815744 10013 26225 107 2703 1037 461202 368373
7340032 9995 32235 279 2899 1028 548693 438187
7864320 10024 32270 258 3061 1037 558467 449034
8388608 10005 98156 120 1989 1331 2377032 793347

3.5 Workaround for non-power-of-2 way sizes

The purpose of the cache indexing function is to map all the memory addresses
equally over all the sets in the cache. When the number of sets in the cache is a
power of two this is easily done by using the least significant bits as an index.
If a cache has N sets then logs(N) bits are needed for the index. When the
number of sets is not a power of two it gets more complicated.

One of the reference machines used for this project has a 16-way set-associative
12 MB LLC, which results in a 768 kB way size and 12288 sets. While only
20 bits are needed to index into the cache, the hardware seems to use a hash
function that sometimes uses higher bits to spread cache lines evenly across the
sets.

The workaround for this is based on setting the higher bits of the huge-page-
address to zero. For each way in the cache a huge page was allocated. Only the
first 768 kB of each huge page is used, so the Pirate uses one page per way being
stolen.

4 Evaluation methodology

The Pirate is meant to run with any application, and therefore there is no specific
application that the Pirate should be tested with. To validate the Pirate we
have use a set of benchmarks; two microbenchmarks and three benchmarks from
the SPEC CPU2006 benchmark suite. The microbenchmarks are very simple
applications where we know their behaviour, and therefore we know the expected
result. The SPEC CPU2006 benchmarks are more complex benchmarks, and
these results we can only compare with what others have got when using Pirating
with the same benchmarks.

4.1 Random access microbenchmark

The random access microbenchmark is an application that given a dataset size
accesses all cache-lines in the dataset in a random order. The one used here is
written in x86-assembler. It has a tight loop with one memory access in each
loop iteration, and uses a linear congruential generator (LCG) [§] to generate
random addresses.

Since the data is accessed in a random order the result of this benchmark is
independent of the replacement policy used in the architecture since the chance
of a certain cacheline being in the cache does not depend on its history. The
resulting fetch ratio curveﬂ should be linear to the cache size. With a cache size
of zero the fetch ratio is one since no data is in the cache and with cache size
larger or equal to the dataset size the fetch ratio is one since the whole dataset
fits in the cache.

Figure [3| shows simulated fetch ratio curves for the random access benchmark
with different replacement policies.

100% T T T T T T T
: : : : : ; LRU —<—
Nehalem —eo—

75%

50%

Fetch Ratio

25%

0%

Figure 3: Simulated fetch ratio curve for the random access microbenchmark
with 5 MB dataset and with different replacement policies.

4.2 Sequential access microbenchmark

The sequential access microbenchmark is an application that given a dataset
size accesses all cache-lines in the dataset in a sequential order. Here the fetch
and miss ratio curves will depend on the replacement policy used. With a LRU
eviction protocol the fetch ratio will be one for all cache sizes smaller than the
dataset size. When iterating over the dataset each cacheline will be accessed in
order, and since the whole dataset can not fit in the cache each cacheline will
become the least recently used one and be evicted before it is accessed again.
When the cache size is larger or equal to the dataset size the fetch ratio will be
zero since the whole dataset can fit in the cache.

3This is true for both fetch and miss ratio, since prefetching is the difference between them
and prefetching will not help because the accesses are random.

10

With the Nehalem pseudo-LRU cache it is harder to predict the result, but
it can be simulated and Figure [] shows the result of this simulation together
with the LRU cache.

15% T T T T T T T
s s s s s © LRU —x<—
Nehalem —eo—

10%

Fetch Ratio

5%

0%
0

Figure 4: Simulated fetch ratio curve for the sequential access microbenchmark
with 5 MB dataset and with different replacement policies.

4.3 SPEC CPU2006

SPEC CPU2006 is a standardized set of benchmarks from real life applications
meant to measure the CPU and memory performance in ”real time”. These
benchmarks are mostly run to see that nothing unexpected happens. Three
benchmarks from SPEC CPU2006 are used in this report:

e 429.mcf: Integer benchmark solving single-depot vehicle scheduling in
public mass transportation problems.

e 450.soplex: Floating point benchmark solving a linear program using the
Simplex algorithm.

e 482.sphinx3: Floating point benchmark doing speech recognition.

4.4 Reference machines

Four reference machines with different setup (Table [1)) are used in this study.
All machines have 1libpfm4-4.4.0 and Google Protobuf 2.5.0 installed. The
hardware performance counters used for the measurements can be found in the
appendix.

Architecture Linux distro Kernel CPU LLC-size No. ways
Intel Nehalem Ubuntu 3.11.6 2 x Intel Xeon E5520 8 MB 16
Intel Westmere Gentoo 3.10.19 Intel Xeon E5620 12 MB 16
Intel Sandy Bridge Ubuntu 3.8.0 Intel Core i7-2600K 8 MB 16
AMD Phenom Ubuntu 3.12.3 AMD Phenom IT X4 920 6 MB 48

Table 1: Reference hardware setups

11

5 Results

The different benchmarks was run on the reference machines and the plots will
be presented here. The grey marked area in the plots are where the Pirate is no
longer stealing the cache that it should be, and the limit used for this is that
when the CPI has increased 10% from the reference. We can see that the fetch
ratio is kept under 10% in the trusted region (white background) of all graphs
with this limit.

5.1 Intel

Figure [o| shows the result of the random access microbenchmark for the Intel
machines. The fetch ratio curves follow the expected line, but on the Nehalem
machine it looks like the Pirate is stealing one way (512 kB) too much. We
tested running the random access microbenchmark with a dataset size of 8 MB
(the whole cache) without the Pirate, and the fetch ratio corresponded to 512
kB of the cache missing, so the reason is probably that the OS is stealing cache.
The curves stray from the line close to zero cache size and this is because the
Pirate is stealing less cache than it should in this region, and hence the fetch
ratio for the target can be expected not to change linearly. The curve starts to
level of when the target cache size get close to the dataset size, and this is likely
due to the OS using some cache.

100% 100% 100%

CPI

Fetch ratio, target —e— Fetch ratio, target —o— Fetch ratio, target —e—
heoretical ref — Tl ical ref — Theoretical reference
80% V\ 80% 80% \\
2 6% \\\ 2 e0% 2 60%
= = <
5 0% ‘\ 5 40% £ 40% N
2 0% \\ g 0% £ 0% AN
20% \‘\ 20% 20% \\
0% 0% 0% -
o o o
70% Fetch ratio, pirate —e— 1.6 35% Fetch ratio, pirate —e— 1.3 35% Fetch ratio, pirate —e— 13
60% |- CPI, pirate —— .| 14 30% ‘\ CPI, pirate —— . :f 30% } CPI, pirate —— :f
o 5% 1.2 o 25% \ 1 o 2% 1
T 40% 1~ § 20% 09§ 20% L\ 0.9
= 5 = | 08 & = 08
S 30% \ \ 0.8 S 15% l \ 07 S 15% 0.7
“ 20% 0.6 " 0% 0.6 “ 0% 0.6
\ 0.5 \ 0.5
10% 0.4 5% 0.4 5% 0.4
0% - 0.2 0% 0.3 0% 03
01 2 3 45 6 7 8 9 0 2 4 6 8 10 12 01 2 3 45 6 7 8 9
Target cache size (MB) Target cache size (MB) Target cache size (MB)
(a) Nehalem, 7TMB dataset. (b) Westmere, 10MB dataset. (c) Sandy Bridge, TMB dataset.

Figure 5: Random access microbenchmark results for Intel machines.

Figure [6] shows the result of the sequential access microbenchmark. This is a
more aggressive benchmark and therefore the amount of cache the Pirate can
steal decreases. This is because the target accesses its data sequentially and
therefore gets help by prefetchers. In the trusted region, the fetch ratio curves
fit well with the simulated curve for the Nehalem replacement policy in Figure [4

The result from the SPEC CPU2006 benchmarks (Figures and E[) corre-
spond well with the result Eklov et. al got with their Pirate [5].

12

Fetch ratio

Fetch ratio

reicn rauo

Fetch ratio

100%
80%
60%
40%

20%

0%
100%

90% |

80%
70%
60%
50%
40%
30%
20%
10%

0%

‘-%target —o—

Fetch ratio, pirate —e—
CPI, pirate ——

e

0

1

Target cache size (MB)

0
2 3 456 7 8 9

(a) Nehalem, TMB dataset.

o
100% B tio, target —e—
80% \\

2 60%

E \

o

5 40% \
20% At

0%
100% ch ratio, pirate —e—
90% \F‘\ CPI, pirate ——
80%

o 70% \T\\

= 60% A

5 50% \

3 40%

“ 30% \ e
20% l-\ \
10%

0%
0 2 4 6 8 10 12
Target cache size (MB)

(b) Westmere, 10MB dataset.

CPI

100%

80%

60%

40%

Fetch ratio

20%

0%
100%

90% |-

80%
70%
60%
50%
40%
30%
20%
10%

0%

Fetch ratio

tio, target —e—
"“v-‘\
Fetch ratio, pirate —e—
~ CPI, pirate —+—
0
01 2 3 4 5 6 7 8 9

Target cache size (MB)

CPI

(c) Sandy Bridge, TMB dataset.

Figure 6: Sequential access microbenchmark results for Intel machines.

16.0%
14.0%
12.0%
10.0%
8.0%
6.0%
4.0%
2.0%

0.0%
80%

70% |

60%
50%
40%
30%
20%
10%

0%
0

o-o-o-Fetch ratio, target —e—

N

Fetch ratio, pirate —e—
CPI, pirate —+—

1

2 3 45 6 7 8 9
Target cache size (MB)

(a) Nehalem

1.8
1.6
14
1.2

0.8
0.6
0.4

CPI

14.0% -
"‘\@ch ratio, target —e—
12.0% \
e
o
. 10.0% g
3 8.0%
2 60%
L
4.0%
2.0%
0.0%
o
509/" Fetch ratio, pirate —e—
45% | CPI, pirate ——
40%
o 35% \\\\
£ 30% \
£ 25% * \
% 20% \
% 15%
10%
5% wy
0%
0 2 4 6 8 10 12
Target cache size (MB)

(b) Westmere

14

1.2

0.8
0.6
0.4

0.2

CPI

18.0%
16.0%
14.0%
12.0%
10.0%
8.0%
6.0%
4.0%
2.0%

0.0%
50%

rercn rauo

45% |-

40%
35%
30%
25%
20%

Fetch ratio

Fetch ratio, target —e—

‘ll\.\“\-

Fetch ratio, pirate —e—
CPI, pirate —+—

e

12 3 45 6 7 8 9
Target cache size (MB)

(c¢) Sandy Bridge

Figure 7: SPEC CPU2006, 429.mcf benchmark results for Intel machines.

13

1.6
14
1.2

0.8
0.6
0.4
0.2

CPI

12.0%

- Fetch ratio, target —e—
10.0% \\\
8.0% ™
-]
8 I
5 6.0% -,
>
L o40%
2.0%
0.0%
o
80% Fetch ratio, pirate —e—
70% \ CPI, pirate —+— -
60%
o som |\
= 50% \
= o \
5 40% \ N
5 30% \ \
20%
10%
0%
01 2 3 456 7 8 9

Target cache size (MB)

(a) Nehalem

1.8
1.6
14
1.2

0.8
0.6
0.4

CPI

rercn rauo

Fetch ratio

10.0%
9.0%
8.0%
7.0%
6.0%
5.0%
4.0%
3.0%
2.0%
1.0%
0.0%

60%
50%
40%
30%
20%
10%

0%

Fetch ratio, target —e—
~
N
o
\‘
o
A

Fetch ratio, pirate
A CPI, pirate

—_—

(NN

N

2 4 6 8 10

Target cache size (MB)

(b) Westmere

12

1.6
14
1.2

0.8
0.6
0.4
0.2

CPI

reicn rauo

Fetch ratio

10.0%
9.0%
8.0%
7.0%
6.0%
5.0%
4.0%
3.0%
2.0%
1.0%
0.0%

60%
50%
40%
30%
20%
10%

0%

¥

Fetch ratio, targe

N
.

Fetch ratio,
CPI,

pirate —e—
pirate ——

-//

AN

01 2 3 456 7 8 9

Target cache size (MB)

(c) Sandy Bridge

Figure 8: SPEC CPU2006, 450.soplex benchmark results for Intel machines.

6.0%

5.0%

¥

Fetch ratio, targe

4.0%

3.0%

Fetch ratio

2.0%

1.0%

0.0%

70%

60% |

50%

Fetch ratio, pirate —e—
CPI, pirate —+— ..,

40%

30%

Fetch ratio

20%

10%

0%
0

1

2 3 456 7 8 9
Target cache size (MB)

(a) Nehalem

1.6
14
1.2

0.8
0.6
0.4

CPI

Fetch ratio

Fetch ratio

5.0%
4.5%
4.0%
3.5%
3.0%
2.5%
2.0%
1.5%
1.0%
0.5%

0.0%
40%

35% |

30%
25%
20%
15%
10%

5%

0%

Fetch ra

\

io, target —e—

N

hi

Fetch ratio, pirate
CPI, pirate

‘_’—7

e

\

LN,

2 4 6 8 10
Target cache size (MB)

(b) Westmere

12

CPI

Fetch ratio

Fetch ratio

6.0%

5.0%

4.0%

3.0%

2.0%

1.0%

0.0%
60%

50%
40%
30%
20%

10%

0%
0

|

Fetch ratio, targe

pirate —e—

Fetch ratio,
‘ pirate ——

CPI,

12 3 45 6 7 8 9
Target cache size (MB)

(c¢) Sandy Bridge

Figure 9: SPEC CPU2006, 482.sphinx3 benchmark results for Intel machines.

14

1.8
1.6
14
1.2

0.8
0.6
0.4
0.2

1.8
1.6
14
1.2

0.8
0.6
0.4
0.2

CPI

CPI

5.2 AMD

The results for the AMD machine are more difficult to interpret. A problem with
the AMD system is that it does not have any core-specific counters for shared
resources, which makes it hard to measure fetch ratio or miss ratio for the target
since fetches and misses from the Pirate are counted to. Figure [10] shows the
result of the microbenchmarks for the AMD system and we can see that the miss
ratio goes up to almost 200% which is a sign that misses from both target and
Pirate were counted. In principle this should work since we know that as long
as the CPI of the Pirate is within its limit the Pirate is not missing in the cache.
Our interpretation of the curves are that this AMD architecture probably uses
another replacement policy. The counters used are seen in Table |2 Another
thing that the Pirate application does not take into account is that this cache is
exclusive, and that the size of the L1 and L2 cache should be withdrawn from
the amount of cache that the Pirate is stealing, and the available cache to the
target should be increased by the same amount.

Event pfm4 name
Instructions PERF_COUNT_HW_INSTRUCTIONS
Cycles PERF_COUNT_HW_CPU_CYCLES

LLC Read Misses
Mem Accesses

L3_CACHE_MISSES:ANY_READ
DATA_CACHE_ACCESSES

Table 2: Counters used when running the Pirate on the AMD system.

o o
200% Miss ratio, target —e— 180% ‘ Miss ratio, target —e—
180% X Theoretical reference ——— L [0/ RENRNER W SURAE S SUSHA S —
160% i 140%

140% "

2 120%)¢ o 12% L}

K & T 100%

= 100% = b

@ X 8 8%

S 80% s

o 60%
60% R
o ™ 40%
40% 3
20% 2 NS 20%
0% 0%
3.0 CPI, pirate —+— i: [CPI, pirate —+—
25 4.0 \
2.0 33 \
E g E 3.0 y
1.5 25 |
2.0 ‘
1.0 15
1.0 L‘
0.5 0.5

(a) Random access microbench-

mark

0

1 2 3 4 5 6
Target cache size (MB)

7

(b) Sequential access microbench-

mark

0

1

2 3 4 5 6
Target cache size (MB)

7

Figure 10: Microbenchmark results with a 5MB dataset for the AMD machine.

15

6 Enhancements

The rate of how often the Pirate can touch each cacheline is what limits how
much cache the Pirate can steal. One way to increase the access rate is to
divide the dataset across several Pirate threads as stated above. Another way
to increase single thread access rate would be to rewrite the Pirate loop in x86
assembler, to make the loop as tight as possible. This would slightly increase
the amount of cache that the pirate can steal. The limit of how much this could
help is the LLC bandwidth since the target should not be noticeably affected by
the Pirate’s memory accesses.

One way to deal with this problem is to write a Pirate loop with a variable
amount of nop operations, so that the tightness of the loop can be adjusted.
This could then be used to ensure that the Pirate’s access rate does not affect
the bandwidth of the target. However, if the tightness of the Pirate loop would
be changed at runtime it would be hard to use CPI for validating the Pirate,
and fetch ratio would have to be used.

As mentioned in the introduction, David Eklov who proposed Cache Pirating
[5] also proposed the Bandwidth Bandit [6]. The Bandit is based on the same idea
as the Pirate but instead of stealing shared cache it steals memory bandwidth.
For the Bandit to be effective more needs to be known about the memory system,
and this is usually poorly documented, and therefore the Bandit is hard to make
portable between different machines.

The Bandit can be implemented using random accesses, which makes it
less dependent on the specific memory it is running and more portable across
machines, at the cost of effectiveness. This could potentially be implemented
alongside with the Pirate. This would enable us to either steal cache and memory
bandwidth one at a time, or both at the same time by running the Bandit and
the Pirate on separate coreﬂ

7 Usage
7.1 Installation
Make sure these two packages are installed:
e libpfm4 |[http://perfmon2.sourceforge.net/|
e Google Protobuf [https://developers.google.com/protocol-buffers/|
Download the Pirate from my git repository and compile:
git clone git@github.com:fraghag/pirate.git pirate
cd pirate
make

Activate huge pages in your Linux system:
Five-step process found here https://wiki.debian.org/Hugepages.

4This is under the assumption that we have at least 4 cores in the CPU. One each for the
target, Pirate, Bandit and the monitoring application that handles the sampling.

16

http://perfmon2.sourceforge.net/
https://developers.google.com/protocol-buffers/
https://wiki.debian.org/Hugepages

7.2 Running the Pirate

The Pirate is run through the Linux terminal command with:
./perfpirate [arguments] -- [target_command target_arguments]

Example

./perfpirate -c 0 -C 1 --sample-period=100000 -e BRANCH_INSTRUCTIONS_RETIRED
—-e MISPREDICTED_BRANCH_RETIRED -o result.pb -- my_target -s 4096

Arguments

-c, ——target-cpu=CPU
Pin target process to CPU, default is 0.

-C, --pirate-cpu=CPU Pin pirate to CPU. Repeat this option for more pi-
rates several Pirate threads. It is recommended that you set this by yourself,
since a working default depends on the hardware.

-e, ——target-event=EVENT
Events to measure on the target. EVENT given with the name used in libpfmj.

-E, --pirate-event=EVENT
Events to measure on the target. EVENT given with the name used in libpfm/.

-0, ——output=FILE
Filename and path of Protobuf output file. Default is perfpirate.pb.

-r, -—target-raw-event=EVENT

Raw events to measure on the target. EVENT given in the form of a string
beginning with 'raw:’ and then the raw event mask (if hexadecimal mask start
with 'raw:0x’).

-s, ——pirate-size=SIZE
Pirate data set size. This disables the online size adjustment, and just samples
the given SIZE.

--sample-freq=N
Set event sample frequency for the instruction counter on the target. Do not use
together with the —-sample-period argument.

-—-sample-period=N
Set event sample period for the instruction counter on the target. Default value

is 1,000,000. Do not use together with the --sample-freq argument.

-7, ——help
Gives a help list.

--usage
Give a short usage message.

17

7.3 Performance counters

With the libpfm-4.4.0 package there is a application examples/showevtinfo
which shows all the available events for the current architecture and OS with
their libpfm4 names and available unit-masks. It also shows the counters’ code
which can be used to find the counter in the Intel developer manual [9] where they
are documented in the PERFORMANCE-MONITORING EVENTS chapter.

To use unit-masks with a counter just add them after the counter name
separated with colons: PFM4_EVENT_NAME:UMASK1 : UMASK2

7.4 Common pitfalls
Cache architecture

If the cache has non-uniform access times the target and the Pirate could have
different access times to different parts of the cache and the same expected result
as above might not be applicable. It is difficult to predict what the result should
be if this is causing problems.

LLC bandwidth contention

If the combined traffic to the LLC gets too big the applications on all cores will
start waiting for LLC accesses and memory fetches. This is probably the case
when the Pirate’s CPI increases without an increase in miss ratio. This is more
likely to happen when running several Pirate threads, and can also happen if
the target has a high memory access rate. An example of this can be seen in

Figure [6b}

Pin processes to the right cores

If the Pirate’s CPI does not increase a lot when the target’s cache size goes
toward zero then make sure that the Pirate is pinned to a core that share LLC
with the target. The risk of this is high if the computer has more than one CPU,
and the Pirate and target are pinned to different CPUs.

Also be sure that the Pirate and target are not pinned to the same core. The
risk of this is high if each core has several threads. On Linux systems, different
threads are usually named cpuX where X is the thread id number.

In the folder /sys/devices/system/cpu/cpuX/cache where X is the thread
id number you can find out which caches are shared with which threads. If
threads share LLC cache they are on the same CPU, and if they share L1 cache
they threads on the same core.

DVFS (Dynamic Volt and Frequency Scaling)

If the Pirate’s CPI suddenly decreases when the target’s cache size gets smaller
the OS might have used DVFS to clock down the core that the Pirate is running
on. If you suspect that this might be the case you can disable DVFS in Linux or
the BIOS.

18

Unpredictable performance counters

If you get very unexpected results, like a 200% fetch ratio (see Figure , then
the counters you are using do probably not measure what you expect. A counter
for LLC read misses for example might count the LLC read misses from all cores
on that CPU even though the counter is pinned to a specific core. Check the
documentation on the counter used, and see if there are more suitable counters.

Caches that are not inclusive

If the target seems to have access to more cache that it should have, then the
cache might be non-inclusive or exclusive. If the cache is exclusive there will
be no copy in the L3 cache of the data kept in the L1 and L2. Therefore the
size of the available cache to an application is the sum of the L1, L2 and L3
cache size. The Pirate will also be stealing less of the shared cache since part of
its dataset will reside in the L1 and L2 cache. If the cache is non-inclusive it
is more difficult to say, but the result should be correct as long as the Pirate’s
dataset doesn’t fit in the L2 cache.

OS using cache

If the Pirate seems to steal more cache than it is supposed to, then it might
be the OS that is using some of the cache due to kernel activity. You can test
this by running the random access microbenchmark with a dataset equal to the
cache size, and without the Pirate stealing any cache. Since the accesses in the
microbenchmark are random the percent miss ratio will also be the proportion
of the cache that is missing.

Acknowledgments

I would like to thank the UART team at Uppsala University for involving me
in their work and giving me this opportunity to do this project, and Maya
Neytcheva for supervising the project course. The biggest thanks goes to my
supervisor Andreas Sandberg who has had the patience to help and teach me so
much.

19

References

[1]

Andreas Sandberg, David Black-Schaffer, and Erik Hagersten. “Efficient
Techniques for Predicting Cache Sharing and Throughput”. In: Proc. Inter-
national Conference on Parallel Architectures and Compilation Techniques
(PACT). 2012, pp. 305-314. por: [10.1145/2370816. 2370861,

Andreas Sandberg et al. “Modeling Performance Variation Due to Cache
Sharing”. In: Proc. International Symposium on High-Performance Com-
puter Architecture (HPCA). 2013, pp. 155-166. DOI: |[10.1109/HPCA. 2013
6522315,

Erik Berg and Erik Hagersten. “StatCache: A Probabilistic Approach to
Efficient and Accurate Data Locality Analysis”. In: Proc. International
Symposium on Performance Analysis of Systems € Software (ISPASS).
2004, pp. 20-27. DOI: |10.1109/ISPASS.2004.1291352.

David Ekl6v and Erik Hagersten. “StatStack: Efficient Modeling of LRU
Caches”. In: Proc. International Symposium on Performance Analysis of
Systems & Software (ISPASS). Mar. 2010, pp. 55-65. DOI: 110.1109/ISPASS,
2010.5452069.

David Eklov et al. “Cache Pirating: Measuring the Curse of the Shared
Cache”. In: Proc. International Conference on Parallel Processing (ICPP).
2011, pp. 165-175. DOI1:|10.1109/ICPP.2011.15.

David Eklov et al. “Bandwidth Bandit: Understanding Memory Contention”.
In: Proc. International Symposium on Performance Analysis of Systems
& Software (ISPASS). 2012, pp. 116-117. DO1: 10.1109/ISPASS. 2012,
6189214.

Moncef Mechri. “Stealing the shared cache for fun and profit”. MA thesis.
Uppsala University, 2013.

Wikipedia. Linear congruential generator. English. Feb. 1. URL: http:
//en.wikipedia.org/wiki/Linear_congruential_generator.

Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 3B:
System Programming Guide. 30.4.4 Precise Event Based Sampling (PEBS).
Intel Corporation. 2010.

20

http://dx.doi.org/10.1145/2370816.2370861
http://dx.doi.org/10.1109/HPCA.2013.6522315
http://dx.doi.org/10.1109/HPCA.2013.6522315
http://dx.doi.org/10.1109/ISPASS.2004.1291352
http://dx.doi.org/10.1109/ISPASS.2010.5452069
http://dx.doi.org/10.1109/ISPASS.2010.5452069
http://dx.doi.org/10.1109/ICPP.2011.15
http://dx.doi.org/10.1109/ISPASS.2012.6189214
http://dx.doi.org/10.1109/ISPASS.2012.6189214
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator

A Tables of counters used

IRV ISAR umr.—v_h._nl_” ..._”.—“__._.”_.ﬂI 17 T STRITT 211 mr._.u_._._.”_._.”_._.._.H TIT] M PRSIl STy 0 2]OET,

THE) oP0 ¥ SHYOLS TTYV: OHYILLEY 5400 EMN
5%} Py ¥ SOVOT TTV-OHILLAM SJ001 PWHIN
TEOOOF=D LOT=0 i VIV ANV VT SSTIC0 SN0 ST TH0T40
- LISl L] SHTAOA I (LI MH LN T

- 0 0 SNOLLONYISNT MH LNOOD S99
HERTI P[] apny il AT, ol

EOI0JS THBPY
HF] ARy
Sa] By
ST

SO DTIFEU]
TIBAT]

I EAR SISILIEDIAN 271 U0 2Ted.J 311 m.._.”_._._.”_._.”_._.._h TDT]M PRSIl S1590TT0) 10 S[qE T,

Fel | 5 X0 [SHMOLSOHYIILAY LENT TNEHIN ERIOAE TIFY]

00 % F SOVOTAIYLLIY LN AN RO TR

U qQoq > ¥ O OO VIV ONINI-S5TIN OTT ANY-T H5MNOISHY S0 00920 S)T

CEHX0 LO1X0 ¥ VINVO ANV SSIN 1T AN VOTHSNOISHY JU00440 | =ypia] Wepy

- (R 1] SHTAR I (LI MH LW THHg w:.i.ﬂ

- i) 0 SNOLLONMISNT MH LNOOD JYdd | Suononagsuy

MEWTI JmI [apny ad AT, pronged TIBAT
TR ISAS THD[HIRA] 2173 0 DTEIL] 9173 Fumung mams esn S9mongy f 2[QEL

E0Re)y REt]] L4 SHMOLSOIYMILEY LENT FIHN | 589015 Woapy

T =0 ¥ SOVOT-OIHLLAET LENT AW W] USR]

LERFED La1=0 F VIV ANVSSIN OTT AN VO HSNOJSI HHOOAA0 | Syaag wepy

- L= L] SHTAOA I (LI MH LM THHg EFLRALD

- 1) 1] SENOILOOYMISNT MH LNOOD Y | Suononagsuy

HEET P[] apo) AT, pronged TIBAT

21

B Protobuf output structure

/* Info about each performance counter */
message PerfCtrInfo
{

optional int32 id = 1;

/* Name in pfm4 library */

optional string name = 2;

optional uint64 config = 3;

optional uint64 configl = 4;

optional uint64 config2 = 5;

optional uint32 type = 6;

message PerfCtrSample
{
/* Target cache size for which the sample was taken */
optional uint32 size = 1;
/* Value for each counter in same sample */
repeated uint64 ctr = 2 [packed=true];

message PerfCtrDump

{
/* Samples for target */
optional PerfCtrSample t_sample = 1;
/* Samples for each pirates-thread */
repeated PerfCtrSample p_sample = 2;

message PerfHeader
{
message TargetSetup
{
/* CPU that the target ran on */
optional uint32 cpu = 1;
/* Number of instructions er sample */
optional uint64 sample_period = 3;
/* Number of counters on the target */
optional uint32 n_ctrs = 4;
/* Target run command */
optional string command = 5;
/* List of used counter on target */
repeated PerfCtrInfo ctr = 6;

message PirateSetup

{
/* Number of ways in the LLC */
optional uint32 ways = 1;

22

3

optional uint32 cache_size = 2;

/* Cache-line size for LLC x/

optional uint32 stride = 3;

optional uint32 way_size = 4;

/* Pirate steal same size whole simulation */
optional bool no_sweep = 5;

/* Number of Pirate threads used */

optional uint32 n_pirates = 6;

/* Number of counters on each Pirate thread */
optional uint32 n_ctrs = 7;

/* List of used counter on Pirate threads */
repeated PerfCtrInfo ctr = 8;

/* List of CPUs for Pirate threads */
repeated uint32 cpu = 9 [packed=true];

/* Target header */

optional TargetSetup t_setup

I
-
.-

/* Pirate header */

optional PirateSetup p_setup = 2;
optional bool no_reference = 3;

/* Sample for reference run of Pirate */
optional PerfCtrSample reference = 4;

23

	Introduction
	Background
	Cache memory
	Associativity
	Replacement policies

	Hardware performance counters
	Understanding cache performance
	Cache Pirating

	The new Pirate
	Automatic parameter detection
	Performance counter attachment
	CPI validation
	Data management
	Workaround for non-power-of-2 way sizes

	Evaluation methodology
	Random access microbenchmark
	Sequential access microbenchmark
	SPEC CPU2006
	Reference machines

	Results
	Intel
	AMD

	Enhancements
	Usage
	Installation
	Running the Pirate
	Performance counters
	Common pitfalls

	Tables of counters used
	Protobuf output structure

