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Abstract

The application of two finite difference schemes is investigated.

Korteweg-de Vries’ equation and Boussinesq’s equation, which are

soliton generating non-linear partial differential equations, are used

as test problems. A periodic scheme is applied to both Korteweg-de

Vries’ and Boussinesq’s equation, while a summation by parts scheme

is applied only to Korteweg-de Vries’ equation. Stability is proven

and order of accuracy is validated. The summation by parts scheme is

applied to a well-posed initial and boundary value problem, while the

periodic scheme is applied to a periodic problem. The periodic scheme

proves to be of expected order of accuracy, while the summation by

parts scheme exhibits good convergence, even exceeding expectations.

Outline

• In Section 2, the continous models are analysed to show stability and
obtain a well-posed initial boundary value problem.

• In Section 3, a periodic finite difference discretisation is introduced for
the periodic problem. Energy estimates are derived for the schemes,
proving stability.

• In Section 3.2, the SBP-SAT spatial discretisation is introduced for the
initial and boundary value problem for the Korteweg-de Vries equation.

• In Section 4, we present convergence results for the fully discrete im-
plementations of each model. In addition, the stability region of the
Boussinesq model with respect to wave number of colliding waves is
investigated.
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1 Introduction and Background

Solitons are waves that travel whithout loosing their shape or energy. They
arise for example in quantum mechanical systems or shallow water systems,
and can be modelled by non-linear PDEs.

Finding stable numerical solutions to initial boundary value problems for
these equations can be quite difficult; the dispersive wave properties of the
problem require a high degree of resolution to avoid large errors. Especially
if the problem leads to a stiff ODE, this means a very large number of com-
putations (as the number of required time steps grows in proportion to some
power of the number of grid points). Thus, increasing the order of accuracy,
and thereby decreasing the required number of grid points, is essential in
order to get feasible computation times.

An additional difficulty is handling the boundary conditions in a manner
that guarantees stability. Working with provably stable methods is advanta-
geous, because it guarantees convergence.

The summation-by-parts simultaneous approximation term (SBP-SAT)
method was developed to meet these needs. It gives stability per construc-
tion; the numerical boundary treatment can be adjusted in such a manner
that it guarantees stability. At the same time, the scheme has the high order
of accuracy required to sufficiently resolve dispersive wave equations. This
means that a sufficiently course grid can be used, so that the stiffness does
not lead to infeasibly long computation times.

In this study, both Korteweg-de Vries’ and Boussinesq’s continous models
are shown to be stable, though a local linearisation is required in the Boussi-
nesq case. The periodic finite difference scheme is shown to be stable when
applied to the periodic formulation of both equations. Order of accuracy is
measured and found to match expectations. The SBP-SAT scheme is applied
to an initial and boundary value formulation of Korteweg-de Vries’ equation,
which is also shown to be stable. The measured order of accuracy for this
scheme is found to exceed expectations.

2 The continous models

This report addresses the numerical handling of two non-linear PDE mod-
els for shallow water waves: the Korteweg-de Vries equation (1) and the
Boussinesq equation (2).

ut = −6uux − uxxx (1)
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utt = uxx − 3(u2)xx − αuxxxx (2)

2.1 Korteweg-de Vries equation

Lemma 1. There exist boundary conditions for which Korteweg-de Vries
equation (1) is well-posed.

Proof. For Korteweg’s equation, it is possible to obtain an energy estimate
without linearising by noting that 6uux = 2uux + 2(u2)x. Hence, (1) is
rewritten as

ut = −2uux − 2(u2)x − uxxx.

Let us introduce the inner product

(a, b) =

r
∫

l

a(x)b(x)dx,

and the energy of the system

E = ‖u‖2. (3)

Now, multiplying by u, adding the transpose and integrating by parts on
some interval x ∈ [l, r] leads to

(u, ut) + (ut, u) = −4(u, uux)− 4(u, (u2)x)− 2(u, uxxx)

= −4(u, uux)− 4
[

u3
]r

l
+ 4(ux, u

2)− 2 [uuxx]
r

l + 2(ux, uxx)

= (−4 + 4)(u, uux) + 2

[

1

2
u2
x − 4u3 − 2uuxx

]r

l

=
[

u2
x − 4u3 − 2uuxx

]r

l
= BT, so

(u, ut) + (ut, u) =
d

dt
‖u‖2 = Et = BT.

For periodic boundaries, BT = 0 which gives Et = 0. It is also possible
to find boundary conditions which fullfill the energy condition BT ≤ 0. For
example one could set u = 0 on both boundaries and ux = 0 on the right
boundary. For the problem to be well-posed, we require three boundary
conditions, as the principal term is a third order derivative (see [2]). Due to
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the u3 term, we must at least have u = 0 at both boundaries. With these
two conditions, we see that at least one more condition on ux is required on
the right boundary in order to fullfill the energy condition. This concludes
the proof.

Let us pose (1) as the initial and boundary value problem (4)























ut = −6uux − uxxx, x ∈ [l, r], t ≥ 0
u = g1(t), x = l
u = g2(t), x = r
ux = h1(t), x = r
u = f(x), t = 0

(4)

2.2 Boussinesq equation

Lemma 2. There exist boundary conditions such that the Boussinesq equa-
tion (2) has a local linearisation (5) which is well-posed, as long as the lin-
earisation coefficient u0 fullfills u0 ≤ 1

3
.

Proof. For the Boussinesq equation (2), the non-linear term is linearised in
order to perform an approximate energy analysis. Making the approximation
u2 ≈ u0u, for some constant u0, we can rewrite (2) as

utt = (1− 3u0)uxx − αuxxxx. (5)

Now that we have a linear equation, we can use Fourier analysis to show
well-posedness. Inserting the Fourier ansats u = ûω(t)exp(ıωx) into (5) leads
to

ûtt = (1− 3u0)(−ω2)û− α(ω4)û

= −ω2(1− 3u0 + αω2)û

= λû.

As long as λ is real and negative, û will not grow, which is equivalent to
that u will not grow. For this to be true independently of ω, we end up with
the requirement u0 < 1

3
. That is, the linear well-posedness conclusion only

holds for sufficiently small solutions.
In order to find well-posed boundary conditions, we employ the energy

method and use the fact that we need four boundary conditions (as the
principal term is fourth order). Multiplying (5) by ut, adding the transpose
and integrating on [l, r] gives
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(ut, utt) + (utt, ut) = 2(1− 3u0)(ut, uxx)− 2α(ut, uxxxx)

= 2(1− 3u0) [utux]
r

l − 2(1− 3u0)(uxt, ux)

− 2α [ut, uxxx]
r

l + 2α(uxt, uxxx)

= −(1− 3u0)‖ux‖2t − α‖uxx‖2t + BT, where

BT = 2 [(1− 3u0)utux − αutuxxx + αuxtuxx]
r

l , so

d

dt
‖ut‖2 = −(1− 3u0)‖ux‖2t − α‖uxx‖2t + BT

Defining the energy of the system as

E = ‖ut‖2 + (1− 3u0)‖ux‖2 + α‖uxx‖2, (6)

we see that dE
dt

= BT . As long as BT ≤ 0, the linearised model is well-
posed, so let us call this the energy condition. A possible set of four boundary
conditions fullfilling the energy condition is u = const and ux = const on both
boundaries, which gives BT = 0. We pose this as an initial and boundary
value problem in (7), and consider the proof complete.







































utt = uxx − 3(u2)xx − αuxxxx, x ∈ [l, r], t ≥ 0
u = c1, x = l
u = c2, x = r
ux = c3, x = l
ux = c4, x = r
u = f1(x), t = 0
ut = f2(x), t = 0

(7)

3 The Semi-discrete Models

3.1 Periodic case

In the case of periodic boundary conditions, both equations (1) and (2) can be
spatially discretised using periodic finite difference schemes. Let us introduce
the periodic derivation matrices D̃1 and D̃2. They can be of varying order

of accuracy but will fullfill D̃1 = −D̃1
T
, D̃2 = D̃2

T ≤ 0 and D̃1D̃2 = D̃2D̃1.
These matrix operators are applied to a vector v approximating the solution
u, taken in the m evenly distributed points xj = jh (j ∈ {0, ..,m− 1}) over
the interval [−L/2, L/2], where h = L

m
. This means vj approximates u(xj).
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Note that the left boundary point is included, while the right boundary point
is not; as the problem is periodic, these points represent the same point and
should not be included twice.

3.1.1 Korteweg-de Vries equation

For equation (1), we can approximate u as v, where

vt = −2v̄D̃1v − 2D̃1v̄v − D̃1D̃2v, (8)

and v̄ denotes a diagonal matrix containing the elements of v on its diag-
onal.

Lemma 3. The spatially discretised version of (1) given by the ODE (8) is
well-posed.

Proof. An energy estimate can be found by multiplying by vT from the left,
and adding the conjugate transpose. This yields

vTvt + vTt v = −2vT v̄T D̃1v − 2vT D̃1
T
v̄Tv − 2vT D̃1v̄

Tv − 2vT v̄T D̃1
T
v

− vT D̃1D̃2v − vT D̃2
T
D̃1

T
v

= −2vT v̄D̃1v + 2vT D̃1v̄v − 2vT D̃1v̄v + 2vT v̄D̃1v

− vT D̃1D̃2v + vT D̃2D̃1v

= 0, which gives

d

dt
‖v‖2h = 0,

where we have introduced the h-norm ‖v‖2h = hvTv. Using the energy (mim-
icking the continous energy (3))

E = ‖v‖2h, (9)

we get

Et = 0

which implies well-posedness.
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3.1.2 Boussinesq equation

A semi-discrete periodic approximation of (2) is given by

vtt = D̃2v − 3D̃2v̄v − αD̃2
2
v. (10)

Lemma 4. The discretisation of (2) given by (10) has a local linearisa-
tion which is well-posed, as long as the linearisation coefficient v̄ fulfills
v̄jj ≤ 1

3
∀j ∈ {0, ...,m− 1}.

Proof. Multiplying by vTt and adding the conjugate transpose gives

vTt vtt + vTttvt = vTt D̃2v + vT D̃2vt − 3vTt D̃2v̄v − 3vT v̄D̃2vt

− αvTt D̃2
2
v − αvT D̃2

2
vt.

Recognising that d
dt

(

vTXv
)

= vTt Xv + vTXvt for a symmetric constant
matrix X, and approximating v̄ as constant, we can rewrite the equation as

d

dt
‖vt‖2h =

d

dt

(

hvT D̃2v
)

− 3
d

dt

(

hvT D̃2v̄v
)

− α
d

dt

(

hvT D̃2
2
v
)

=
d

dt
(hvT (I − 3v̄)D̃2v)− α

d

dt
(hvT D̃2

2
v).

Let us therefore define as the energy of the system

E = ‖vt‖2h − (hvT (I − 3v̄)D̃2v) + α(hvT D̃2
2
v), s.t.

d

dt
E =

d

dt
‖vt‖2h −

d

dt
(hvT (I − 3v̄)D̃2v) + α

d

dt
(hvT D̃2

2
v) = 0.

As the energy does not grow, we can conclude that the ODE is well-posed.
Note that the defined energy exactly mimics the energy in the continous
model (6). This also means that, like the continous energy, it is only valid
for sufficiently small solutions; we require (I−3v̄) ≤ 0 in order for the energy
to be valid. It is also possible to estimate the growth in terms of the norm
of the solution. Integrating in time gives

‖vt‖2h =
(

hvT (I − 3v̄)D̃2v
)

− α
(

hvT D̃2
2
v
)

.

As D̃2 ≤ 0, we can conclude that 1− 3vj should be positive for each j in
order to guarantee that the solution does not grow. This means the growth
is only bounded for sufficiently small solution magnitudes, just as for the
continous model.
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3.2 Boundary value problem

In this section, the Korteweg-de Vries equation with boundary conditions
(4) will be handled using an SBP-SAT spatial discretisation. The boundary
conditions are discretised to

v0 = g1(t)

vm = g2(t)

dmv = h1(t),

(11)

where dm is the m:th row of the derivation matrix, and dmv thus approx-
imates ux at x = r. The SBP-SAT discretisation of (4) is given by

vt = −2v̄D1v − 2D1v̄v −D3v + SAT, (12)

where

SAT = H−1
(

τ1emvm + γ1D
T
1 d

T
m

)

(vm − g1)

+H−1
(

τ2e0v0 + γ2D
T
1 d

T
0

)

(v0 − g2)

+H−1σdTm(dmv − h1).

(13)

The SBP matrices D1 and D3 = D1D1D1 are used to approximate the
derivatives and an SAT term is added to (weakly) enforce the boundary
conditions (11). The SBP operator D1 can be written as D1 = H−1(Q+R),
where H is a positive diagonal matrix, Q is skew symmetric and

R = −1

2
eT0 e0 +

1

2
eTmem.

We have also used the element extraction operator ej, which is a row vector
and contains only zeros, except the j:th element which is a one. Note that
both boundary points are included as the model is no longer periodic, so the
discretisation grid now has m+ 1 points. It can be shown (see appendix A)
that D3 can also be written on this form, with a somewhat different R term,
as

D3 = −H−1
(

DT
1 QD1 +DT

1 RD1 − 2RD1D1

)

.

Lemma 5. There exists a set of parameter values for which (12) is a well-
posed semi-discretisation of (4) with homogenous boundary data.

Proof. To ensure well-posedness, we want the SAT term to cancel out any
positive terms in the growth of the numeric solution. Thus, the SAT term

10



must fullfill two conditions: v should converge toward the boundary condi-
tions at the boundary, but it should not grow. By calculating the growth in
the other terms, we can determine which terms must be in SAT to fullfill the
second condition. Let us define the energy of the system, similarly to the
continous model (3), as

E = ‖v‖2H , (14)

using the H-norm ‖v‖2H = vTHv. Multiplying equation (12) by vTH and
adding the transpose, we have

Et = vTt Hv + vTHvt

= −2vTHv̄D1v − 2vTDT
1 v̄Hv

− 2vTHD1v̄v − 2vT v̄D1Hv

− vTHD3v − vTDT
3 Hv

+ vTHSAT + SAT THv.

Now,

−2vTHv̄D1v − 2vTDT
1 v̄Hv − 2vTHD1v̄v − 2vT v̄D1Hv =

−2vT v̄(Q+R)v − 2vT (Q+R)T v̄v − 2vT (Q+R)v̄v − 2vT v̄(Q+R)Tv

= −4vT v̄Rv − 4vTRv̄v = −8vT v̄Rv = 4(v30 − v3m).

Denoting the j:th row of D1 as dj, we have

−vTHD3v − vTDT
3 Hv = 2vTDT

1 RD1v

− 2vTRD1D1v − 2vTDT
1 D

T
1 Rv,

where

2vTDT
1 RD1v = 2(D1v)

TRD1v

= (D1v)
T [−d0v, 0..., dmv]

T

= (dmv)
2 − (d0v)

2,

and

−2vTRD1D1v − 2vTDT
1 D

T
1 Rv = −4vTDT

1 D
T
1 Rv

= −4(D1v)
T (DT

1 R)v

= [2d0(D1v), 0...,−2dm(D1v)]v

= 2v0d0D1v − 2vmdmD1v.
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Thus, in total,

Et = 4(v30 − v3m)− (d0v)
2 + (dmv)

2 − 2vmdmD1v + 2v0d0D1v

+ vTHSAT + SAT THv,

and it can be seen that by choosing the parameter values

τ1 = 2

τ2 = −2

σ ≤ −1

2
γ1 = 1, γ2 = −1,

(15)

the growth induced by the SAT term (13) (excluding boundary data)
exactly cancels the growth induced by the differential operators:

vTHSAT + SAT THv = 2vT
(

2emvm +DT
1 d

T
m

)

(vm − 0)

+ 2vT
(

−2e0v0 −DT
1 d

T
0

)

(v0 − 0)

+ 2vT (−1

2
dTm)(dmv − 0),

= 4v3m + 2vmdmD1v

− 4v30 − 2v0d0D1v

− (dmv)
2

The resulting energy growth is then

Et = −(d0v)
2 ≤ 0.

Thus, we have a well-posed semi-discretisation which also enforces the
desired boundary conditions.

4 Computations

4.1 Periodic case

4.1.1 Korteweg-de Vries equation

The semi-discrete Korteweg-de Vries equation (8) is integrated in time using
the fourth order Runge-Kutta scheme (sixth and second order derivation op-
erators are used for the spatial discretisation). The analytical soliton solution
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num points error convergence
33 1.125e-01
65 5.494e-03 4.5
129 1.234e-04 5.5
257 2.278e-06 5.8
513 3.736e-08 5.9

Table 1: Spatial convergence; periodic model for KdV with 6th order oper-
ators. Single wave with wave number 1√

2
, up to time t = 1. Discretisation:

k = 0.15h2, where h = L/m and L = 40.

u(x, t) = 2k2sech2(k(x − vt − x0)) is used to generate the initial condition,
with a wave number k = 1√

2
and wave speed v = 4k2. Using an interval

x ∈ [−20, 20], the function is nearly periodic. A sample solution is shown
in Figure (1), where the analytical and numerical solutions are nearly indis-
tinguishable. A sample with a linear combination of three waves of different
magnitude interacting with each other is shown in Figure (2). Note how the
numerical solution to the triple wave ineraction is not simply the linear com-
bination of the analytical solutions for the respective waves; the wave tops
have been displaced after the interaction. A convergence study is also made
with respect to the space step h, showing almost sixth order convergence
(see Table 1) and second order convergence (see Table2) respectively. This
is reasonable considering the operators used. Note that in all tables in this
report,

error e denotes e =
√
h · ‖u− v‖ (16)

and

convergence denotes
∆ log e

∆ log h
. (17)

4.1.2 Boussinesq equation

The semi-discrete Boussinesq equation is also handled with the Runge-Kutta
time scheme, after first being rewritten to a first order ODE in time using
x1 = v and x2 = vt as

[

x1

x2

]

t

=

[

x2

D̃2x1 − 3D̃2x̄1x1 − αD̃2
2
x1

]

.
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num points error convergence
33 3.607e-01
65 8.486e-02 2.1
129 2.040e-02 2.1
257 5.074e-03 2.0
513 1.271e-03 2.0

Table 2: Spatial convergence; periodic model for KdV with 2nd order oper-
ators. Single wave with wave number 1√

2
, up to time t = 1. Discretisation:

k = 0.15h2, where h = L/m and L = 40.

num points error convergence
33 1.707e-03
65 2.836e-04 2.6
129 6.758e-06 5.5
257 1.211e-07 5.8
513 1.971e-09 6.0

Table 3: Spatial convergence; periodic model for Boussinesq with 6th order
operators. Single wave with wave number 0.3, up to time t = 1. Discretisa-
tion: k = 0.023h2, where h = L/m and L = 80.

num points error convergence
33 4.820e-03
65 2.686e-03 0.86
129 7.570e-04 1.8
257 1.934e-04 2.0
513 4.869e-05 2.0

Table 4: Spatial convergence; periodic model for Boussinesq with 2nd order
operators. Single wave with wave number 0.3, up to time t = 1. Discretisa-
tion: k = 0.15h3, where h = L/m and L = 80.

14
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Figure 1: Sample solution to KdV equation (single wave with wave number
0.8) computed with 200 grid points and 6:th order operators
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Figure 2: Sample dynamics of KdV equation, three waves with wave numbers
0.8, 0.6 and 0.4, computed on a 400 point grid with 6th order operators.
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solution at t = 40, m = 200, b = [0.2, 0.15]

x

v

Figure 3: Sample solution to Boussinesq eq.

Using the CFL condition k < 1

max(|eig(D̃2

2
)|)

which is an approximation for

RK4 based on the principal term, numerical approximations of the solution
can be computed and compared to the analytical solution

u(x, t) = 2b2sech2(b(x− ct− x0)), where

c = ±
√
1− 4b2

Here the model parameter α is taken to be α = 1. With the single soliton
test problem, the order of convergence (17) is as expected for the operators;
6.0 for the sixth order operator, see Table (3) and 2.0 for the second order
operator, see Table (4). A sample solution for the two wave interaction
problem and the corresponding time dynamics are shonw in figures (3) and
(4) respectively. In these samples, the initial condition is the sum of two
solutions with opposite wave speeds, so the time dynamics shows the collision
of the two waves. An interesting observation from Figure (3) is that after
the collision, both waves have been displaced backwards in their respective
travel directions.

Another interesting feature of the model is that the analytical solution
produces purely imaginary wave speeds for any wave number b > 0.5. At-
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time dynamics; color = v (m = 200, b = [0.2, 0.15]

 

 

0 5 10 15 20 25 30 35 40

−40

−30

−20

−10

0

10

20

30

40

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 4: Sample dynamics to Boussinesq eq., waves with b = 0.2 and
b = 0.15, computed on a 200 point grid

tempting to numerically produce these solutions causes the approximation
to “blow up”, that is it produces a spike that grows in magnitude without
bound. Interestingly, this is also the case for any collision of waves where
the sum of their wave numbers is greater than 0.5, which is shown by testing
collisions with different pairs of wave numbers, and presuming that if the
solution blows up for a given pair of wave numbers, it will also blow up if one
of the wave numbers is increased. Figure (5) shows, for a sequence of wave
numbers b1, the lowest wave number of the other wave b2 at which blowup
occurs. Though only ten values are tested in each dimension, the result seems
to support the hypothesis that blowup occurs wneh b1 + b2 > 0.5. A similar
result was found by Tzirtzilakis et. al. [1].

4.2 Boundary value problem

4.2.1 Estimating accuracy

To estimate the overall order of accuracy of the SBP-SAT discretisation (12),
consider as example a D1 operator of interior order 2p. With the diagonal
norm operator type used in this investigation, the order of accuracy of the
operator at the boundary is then p [3]. According to Svärd and Nordström
[4], the third derivative matrix operator D3 = D1D1D1 will loose one order
of accuracy at the boundary per multiplication, so the order of accuracy on
the boundaries will be only p− 2. However, the principal term in the model
is 3rd order, whereby we can expect to reduce the loss of order of accuracy
which is due to the boundary interaction by three orders, for the solution in
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Figure 5: Blowup bounds for pairs of waves

whole. This gives a total order of accuracy of min(2p, p+1) = p+1 ∀p ∈ N.
Note that this only applies if the discretisation is stable in an energy sense.

4.2.2 Estimating CFL condition

Writing the model (12) in the form

vt = Mv,

M = −D3
1 +H−1((DT

1 d
T
m)e

T
m − (DT

1 d
T
0 )e

T
0 − dTmdm)

where M takes into account only the principal term D3 and the SAT
terms which cancel the energy terms of this operator, we can approximate a
CFL condition for the scheme as

k <
1

|λ| ,

for all eigenvalues λ of M (let us take a safe choice of k = 1
4max|λ|).
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Figure 6: Sample numerical (SBP, m = 200) and analytical solution to KdV
equation

4.2.3 Test problem

The test problem for the convergence study concists of a soliton with wave
number 1√

2
starting at x = 10 and passing through the boundary until time

t = 5, at wich it is half way through the boundary. Initial and boundary
conditions are set to match the analytical solution for this soliton. This test
problem is suitable because it contains boundary interactions, but still allows
comparing to an analytical reference.

Sample solutions and dynamics are shown in figures (6, 7, 8). The fourth
order Runge-Kutta integrator is used when performing a convergence study
for the discretisation, the results of which are shown in Tables 5 through
8. Table 9 shows order of convergence of the method per operator, together
with the expected outcome.

4.2.4 Standing waves

Another interesting feature of the Korteveg-de Vries boundary value model is
that it generates some kind of standing waves. This is illustrated by setting
an initial white noise state; the time dynamics in Figure 9 show how this

19



time

sp
ac

e

Two wave interaction time dynamics

 

 

0 1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

0

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7: Sample dynamics (SBP, m = 200) of KdV equation, 2 waves: one
with wave number 0.7 starting at x = −10 and one with wave number 0.4
starting at x = 0, run to time t = 10.
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Figure 8: Sample dynamics (SBP, m = 200) of KdV equation, wave with
wave number 0.7 starting at x = 10, run to time t = 10: interacting with
homogenous boundary.
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m error convergence
32 6.710e-01
64 2.644e-01 1.3
128 6.548e-02 2.0
256 1.444e-02 2.2
512 3.530e-03 2.0

Table 5: Spatial convergence (SBP model) for KdV with 2nd order operators.
Single wave starting at x = 10 with wave number 1√

2
, up to time t = 5.

Discretisation: k = 0.24h3, where h = L/m and L = 40.

m error convergence
32 4.414e-01
64 1.217e-01 1.9
128 9.344e-03 3.7
256 8.728e-04 3.4
512 9.739e-05 3.2

Table 6: Spatial convergence (SBP model) for KdV with 4th order operators.
Single wave starting at x = 10 with wave number 1√

2
, up to time t = 5.

Discretisation: k = 0.12h3, where h = L/m and L = 40.

m error convergence
32 4.502e-01
64 6.587e-02 2.8
128 1.226e-02 2.4
256 8.650e-04 3.8
512 3.887e-05 4.5

Table 7: Spatial convergence (SBP model) for KdV with 6th order operators.
Single wave starting at x = 10 with wave number 1√

2
, up to time t = 5.

Discretisation: k = 0.063h3, where h = L/m and L = 40.
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m error convergence
32 3.610e-01
64 5.273e-02 2.8
128 3.243e-04 7.3
256 1.280e-06 8.0
512 4.734e-09 8.1

Table 8: Spatial convergence (SBP model) for KdV with 8th order operators.
Single wave starting at x = 10 with wave number 1√

2
, up to time t = 5.

Discretisation: k = 0.0031h3, where h = L/m and L = 40.

operator ord. measured conv. expected conv.
2 2.0 2
4 3.2 3
6 4.5 4
8 8.1 5

Table 9: Spatial convergence (SBP model) per operator

state converges to a standing wave. The boundary conditions in this case are
homogenous.
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Figure 9: Sample dynamics (SBP, m = 200) of KdV equation, initial white
noise, run to time t = 40: standing wave generated under homogenous bound-
ary conditions.

5 Conclusions and discussion

The Korteweg-de Vries problem is proven to be well-posed, both in the conti-
nous model, in the periodic discretisation and in the bounded discretisation.
For the Boussinesq equation, well-posedness can only be shown for sufficiently
small solution magnitudes, and only under a linearisation. This means that
we can only expect a well-posed behaviour for sufficiently small and smooth
solutions, and a formal proof of global well-posedness has not been obtained.

Both the periodic and the SBP-SAT finite difference methods show stabil-
ity and high order of accuracy for the relevant test problems. In the periodic
case, convergence matches expectations. For the SBP-SAT scheme, especially
the higher order operators are found to give even better convergence than
what could be expected. This means the method can be used to simulate
solutions accurately within reasonable time. Both schemes also appear to
maintain stability even when applied to a wave interaction problem, though
this lacks an analytical solution and thus has not been tested. Note that
stability was only proven given homogenous boundary data. The initial and
boundary value test problem which the SBP-SAT scheme was applied to con-
tains non-homogenous boundary conditions, but the scheme still appeared
to evolve in a stable manner.
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As observed in the Boussinesq two wave interaction study, the problem
is stable approximately as long as the two wave numbers b1 and b2 fullfill
b1 + b2 < 0.5. Note that the study was performed for several different levels
of grid refinement, all giving the same result. This would indicate that it
is indeed a stability region for the PDE, rather than for the discretisation,
which is also in agreement with the findings in Tzirtzilakis et. al. [1]. Note
that this must be considered as a limitation in the PDE model, with respect
to the physical system. It may indicate that a physical system under similar
circumstances would produce some turbulent behaviour. We can not expect
it to follow the model in these cases as the physical premises for the model
can not hold in the state the model is producing (e.g. infintely growing water
depth).
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A Proof that D3 is an SBP operator

Given

D1 = H−1(Q+R),

where H > 0 is diagonal (thus, H−1 > 0 exists and is diagonal as well),
Q = −QT and R is zeros except the upper left element which is −1

2
and the

bottom right element which is 1
2
, all square matrices of the same dimension,

we want to show that

D1D1D1 = −H−1
(

DT
1 QD1 +DT

1 RD1 − 2RD1D1

)

. (18)

Now,

DT
1 QD1 +DT

1 RD1 = DT
1 (Q+R)D1

= DT
1 HH−1(Q+R)D1

= DT
1 HD1D1,

so

D1D1D1 = −H−1
(

DT
1 HD1D1 − 2RD1D1

)

= −H−1
(

DT
1 H − 2R

)

D1D1.

Multiplying by H from the left, we get

(Q+R)D1D1 = (−DT
1 H + 2R)D1D1

= (−
(

H−1(Q+R)
)T

H + 2R)D1D1

= (−QTH−1H −RH−1H + 2R)D1D1

= (Q+R)D1D1.

Since the LHS equals the RHS, this proves that equation (18) is true
under the given conditions.
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