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Abstract

This report describes the process of making a Fortran90
implementation that computes the susceptibility in the Anderson
Impurity Model (AIM). The implementation makes use of existing
routines in the RSPt (Relativistic Spin Polarized test) code
and is contained in a Fortran90 module that extends the RSPt
code. Future plans for the module include to add routines to
solve the AIM using the so-called superperturbation theory, in
which the susceptibility is one of the major building blocks.
The resulting implementation calculates the susceptibility for
multi-orbital problems but is only checked with analytical results
for the single-orbital problem. It also contains the routines for the
superperturbation, but they need further work to function properly.
Remaining work is to finalize the superperturbation solver and to
increase performance by making use of MPI parallelization and
compressed sparse array format.



Contents

1 Introduction 1

2 Theory 3
2.1 Anderson Impurity Model . . . . . . . . . . . . . . . . . . . . 3
2.2 Dynamical Mean-Field Theory . . . . . . . . . . . . . . . . . 3
2.3 Exact Diagonalization . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Superperturbation . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Relativistic Spin Polarized test . . . . . . . . . . . . . . . . . 6
2.6 The Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Implementation 8
3.1 Verifying the Results . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results 10
4.1 The Fortran90 Module green sp solver . . . . . . . . . . . . 10
4.2 The Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Conclusion and Discussion 12
5.1 Improvements and future work . . . . . . . . . . . . . . . . . 13

6 Appendix 14
6.1 Analytical Expression for the Susceptibility χ . . . . . . . . . 14



1 Introduction

A great challenge in theoretical physics is to calculate the properties of
materials. These properties are defined by the movement and interaction
between the electrons within the material. The Hamiltonian H is an
operator corresponding to the total energy of a system and it is known for
this type of problem. It describes the kinetic energy, the lattice potential
and the Coulomb interaction between the electrons respectively in the
following three terms

H =
∑
i

[
−~2∆i

2me

−
∑
l

e2Zl
4πε0|ri −Rl|

]
+

1

2

∑
i 6=j

e2

4πε0|ri − rj|
, (1)

where ri and Rl denote the position of electron i with charge −e
and ion l with charge Zle, ∆i is the Laplace operator for the kinetic
energy of electrons with mass me, ε0 is the vacuum dielectric and ~
is the reduced Planck constant. The many-body Schrödinger equation,
HΨ = EΨ, describes the energy E of all the constituent states Ψ of the
system. Although the expression is known, it becomes unfeasible to solve
it numerically for more than O(10) particles. This is due to the Coulomb
interaction, the correlated movement of electron i with every other
electron j, which is a problem that grows exponentially in the number
of electrons. Approximations of H are needed in order to solve it, even
with today’s supercomputers. The Local Density Approximation (LDA) is
an approximation within the Density Functional Theory (DFT) where the
electrons are assumed to move independently in an averaged local density
of the other electrons. This works well for describing the electrons with
weak correlation, but fails to describe those with stronger correlation [1].

Relativistic Spin Polarized test (RSPt) is an Open Source project and a
program for band structure calculations that is developed at the Division
of Materials Theory. It is implemented in the programming language
Fortran90. The user provides the program with an input file that
describes the material to be treated and then the program computes the
electronic structure by solving the many-body Schrödinger equation under
a number of approximations. The interaction between itinerant electrons
can be treated using DFT, meanwhile localized and strongly correlated
electrons need a more rigorous treatment, and is solved explicitly using
for example an Exact Diagonalization solver.
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The goal of this project is to compute the susceptibility for the Anderson
impurity model. The susceptibility is a measurable physical quantity that
describes the responds to a perturbation, from which a lot of information
about a material can be derived. Unfortunately, the complexity of
the susceptibility grows very fast for large problems and it is therefore
computationally expensive. Using output from the Exact Diagonalization
solver in the existing RSPt code an efficient implementation can be
done. The project will be carried out in Fortran 90 and as an
extension module to the RSPt code. Focus lies on completing a robust
implementation for the single-orbital model, but in the future the result
of this project is planned be scaled up to the multi-orbital model and
ultimately developed into a superperturbation solver for the RSPt code,
able to solve the electronic Hamiltonian for any range of hybridization
and electron-interaction strength at a reasonable computational cost.
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2 Theory

2.1 Anderson Impurity Model

The Anderson impurity model (AIM) is a quantum many-body model
that describes an impurity in a bath of free electrons. The model was
first used in the context of materials science to investigate the behavior
of impurities, such as nickel and iron, that are embedded in a metallic
host [2]. The electron-electron interaction is assumed to only occur
on the impurity and the impurity can hybridize with the bath, the
conduction electrons of the host, by exchanging electrons. Moreover, the
solution of this model is an important step in implementing so called
Dynamical Mean-Field Theory (DMFT), which will be covered in more
detail in the next section. Current solvers of the AIM provide controlled
numerical results for spectral and thermodynamic properties, albeit being
computationally expensive and non-scalable for multi-orbital models. Since
many problems in materials science are described by multi-orbital models,
it is important to find an efficient way of solving them. Superperturbation
is a recently proposed method [3] of doing just that, which will be
discussed below.

Figure 1: The Anderson Impurity model describes a magnetic impurity in a
bath of free electrons.

2.2 Dynamical Mean-Field Theory

The main idea of DMFT is to represent the full lattice problem with a
local impurity problem. Assuming that all the lattice sites are equivalent
to each other and focusing on one site, it is clear that the rest of the
lattice acts in the same manner upon every chosen site. Also, the average
influence of the rest of the lattice on a local observable at a given site
can be expressed by a time dependent effective field. Using this, the
problem can be reduced to the solution of the AIM with a self-consistency
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condition. A method to formulate this is cavity construction [2],
illustrated in Figure 2. The first step is to choose a generic lattice site
and then integrate out the external degrees of freedom of the rest of the
lattice. In that way an effective local dynamics that includes the impact
of the rest of the lattice can be defined for the chosen site. The problem
is then solved self-consistently with the condition that the local impurity
Green’s function should coincide with the local lattice Green’s function.

Figure 2: Illustration of the cavity construction in the DMFT loop.

2.3 Exact Diagonalization

Exact Diagonalization (ED) is a method of solving the Schrödinger
equation of a quantum many body system numerically. When employing
this method to the AIM, the bath is approximated by a finite number
of bath sites. The Hamiltonian that describes the full system consisting
of the impurity and the bath is then solved exactly and diagonalized.
Since the dimension of the Hilbert space increases exponentially as
22(Nimpurity+Nbath), this method is limited by the available memory for a
relatively small number of impurity and bath sites. For example, the
Hamiltonian for a system with 1 impurity site and 6 bath sites would
require 4 GB to store if it is represented with double precision complex
numbers [2]. ED is a suitable technique for non-metallic materials, where
the electrons are localized and their states can be well described by a
discrete spectrum. Metals, on the other hand, have delocalized electrons
that require a continuous spectrum in order to describe their states
properly. One simply needs too many bath orbitals and ED becomes
unfeasible for this type of materials.
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2.4 Superperturbation

Conventional perturbation theory finds an approximate solution to a
problem that cannot be solved exactly by perturbing the exact solution
of a similar problem. This is done by expanding the system in a small
parameter that specifies the difference from the exactly solvable problem.
Superperturbation [3], on the other hand, starts from a reference problem
that is constructed with as much of the essential physics as possible
from the original problem. By transforming into a new set of fermonic
variables, a perturbation theory can be formulated in the difference
between both systems. This is illustrated in Figure 3. In this case, the
reference problem is the AIM with a bath that is approximated with
a small amount of bath orbitals. The reference problem is then solved
exactly using ED. In fact, the use of ED is required here in order to
obtain exact correlation functions, such as the susceptibility, that are
needed for the superperturbation.

Figure 3: The general concept of superperturbation theory.

Applying superperturbation to the solution from ED enables us to
properly describe the properties of insulators as well as metals, although
the starting point is a relatively small reference system.
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2.5 Relativistic Spin Polarized test

Relativistic Spin Polarized test (RSPt) is able to solve the many-body
Schrödinger equation for almost any crystal material using DMFT with a
range of solvers that can be selected by the user [4]. It is implemented
in the programming language Fortran90, which is suitable for numerical
computations. Most parts of the code are parallelized using MPI.
The DMFT loop with the ED solver utilizes the modules and routines
illustrated in Figure 4.

Figure 4: Illustration of the call tree in the RSPt code that comprises the
DMFT loop. Modules are the outer boxes and routines are the
inner boxes.

green solver is the module that contains the routine dmft solver

that handles the DMFT loop. dmft solver calls the routine hia ed

in the module green ed, where the full Hamiltonian describing the
impurity and the bath is solved exactly. When the solved Hamiltonian
is returned from green ed, the routine hia in the module green hia

administrates the computation of necessary functions for the DMFT loop
using the solved Hamiltonian. Importantly, the routine makegreen in the
module green hia basiscontroller computes the Green’s function of
the impurity, after being called through the routine hatom in the module
green hia hatom. This is then iterated until the self-consistency condition
is fulfilled, i.e. when the Green’s function of the impurity is found and
coincides with the local lattice Green’s function.
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The Green’s function of the impurity is defined in the space that is
spanned by the Matsubara frequencies as

gαβ(iω) = −
∫ 1

T

0

eiωτ 〈cα(τ)c†β(0)〉

=
∑
mn

e−
1
T
Em + e−

1
T
En

Em − En + iω
〈m|cα|n〉〈n|c†β|m〉,

where indices α, β are orbitals, τi are time variables, ωi are Matsubara
frequencies given by ω = π

β
(2m + 1), m = 0, 1, 2, ..., 1

T
is the inverse

temperature and c†α (cα) is an operator that creates (annihilates) an
electron in orbital α. Ei denotes the eigenvalue of the eigenstate 〈i|. When
the non-interacting Green’s function of the impurity has been computed,
all the non-zero elements on the form 〈i|c†|j〉 and the eigenvalues of the
states 〈i| and |j〉 are sorted and written to file. Since the Hermitian
conjugate of 〈i|c†|j〉 is equal to 〈j|c|i〉, it is redundant to also store the
〈i|c|j〉 elements.

2.6 The Susceptibility

The susceptibility is a measurable physical quantity that describes the
response of a material to a perturbation, for example a magnetic field. It
is defined in the Matsubara space as

χαβγδ(ω1, ω2, ω3, ω4) = T 2

∫ 1
T

0

dτ1

∫ 1
T

0

dτ2

∫ 1
T

0

dτ3e
i(ω1τ1+ω2τ2+ω3τ3+ω4τ4)

× 〈Tτcα(τ1)c†β(τ2)cγ(τ3)c†δ(τ4)〉,
(2)

where the time translation invariance of the imaginary time two-particle
Green’s function has been used in order to eliminate the dependency on
τ4. Introducing the sum over eigenstates, the susceptibility can be written
as

χαβγδ(ω1, ω2, ω3, ω4) =
1

Z

∑
ijkl

∑
Π

φ(Ei, Ej, Ek, El, ωΠ1 , ωΠ2 , ωΠ3)

× sgn(Π)〈i|OΠ1 |j〉〈j|OΠ2 |k〉〈k|OΠ3|l〉〈l|c
†
δ|i〉,

(3)

where the first sum is over the eigenstates and the second sum is over
all permutations Π of the indices 1,2,3. Furthermore, O1 = cα, O2 = c†β,

7



O3 = cγ and Πi denotes the permutation of the ith index. The sign of the
permutation, sgn(Π), is given by (−1)No. of permutations. The susceptibility is
expected to decrease by 1

ω
.

The function φ is given by the integral

φ(Ei, Ej, Ek, El, ω1, ω2, ω3) =

∫ 1
T

0

dτ1

∫ 1
T

0

dτ2

∫ 1
T

0

dτ3e
− 1

T
Ei+(Ei−Ej)τ1

× e(Ej−Ek)τ2+(Ek−El)τ3+i(ω1τ1+ω2τ2+ω3τ3),

(4)

which is evaluated as

φ(Ei, Ej, Ek, El,ω1, ω2, ω3) =
1

iω3 + Ek − El

[
1− δω2,−ω3δEj ,El

i(ω2 + ω3) + Ej − El

× (
e−

1
T
Ei + e−

1
T
Ej

iω1 + Ei − Ej
− e−

1
T
Ei + e−

1
T
El

i(ω1 + ω2 + ω3) + Ei − El

)

− 1

iω2 + Ej − Ek

(
e−

1
T
Ei + e−

1
T
Ej

iω1 + Ei − Ej
+ (1− δω1,−ω2δEi,Ek

)

× e−
1
T
Ek − e− 1

T
Ei

i(ω1 + ω2) + Ei − Ek
+

1

T
δω1,−ω2δEi,El

e−
1
T
Ei

)

+ δω2,−ω3δEj ,El

(
e−

1
T
Ei + e−

1
T
Ej

(iω1 + Ei − Ej)2
− e−

1
T
Ej

iω1 + Ei − Ej

)]
.

(5)

3 Implementation

This section describes the details of the implementation. In order to
make the most use of the existing routines in the RSPt code, the module
that computes the susceptibility (green sp solver, where sp stands for
superperturbation) is fitted into the code as described in Figure 5.
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Figure 5: Illustration of how the green sp solver module is fitted into the
existing RSPt code. Modules are the outer boxes and routines are
the inner boxes.

In order to integrate the new module, minimal modifications of the
existing code are necessary in this way. To execute the module, it is
selected in the same manner as the other solvers in the input file of
the RSPt code. The result is printed to the standard output of the
program. Since the new code is put in the DMFT part and changes
its data, the self-consistency iterations will make no sense for the time
being. However, if the green sp solver module is written into a
functioning superperturbation solver, it will return a result that satisfies
the self-consistency condition and will exit the iterative loop.

The susceptibility depends on four orbital indices and three
frequency indices. Therefore, its storage and computation requires a
lot of memory and scale badly for larger problems. Due to the
nature of the creation and annihilation operators the array is sparse.
A lot of computational time can thus be saved by looping only over
non-zero elements rather than all of the elements. Since the factor
〈i|OΠ1|j〉〈j|OΠ2|k〉〈k|OΠ3|l〉〈l|c

†
δ|i〉 in equation (3) is independent of the

frequencies, one can first loop over the sorted array of nonzero elements
〈i|c†|j〉 that is written to file by the existing ED routines. If the product
of the four is non-zero, then the factor φ is calculated.
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3.1 Verifying the Results

The computed susceptibility may be verified by implementing an analytical
expression for the susceptibility of a single-orbital model in Matlab and
then compare the results numerically. This especially confirms that the
data written to file by the existing code is treated correctly and also that
the permutations with their respective sign are correct.

4 Results

4.1 The Fortran90 Module green sp solver

The result is a Fortran90 module that extends the existing RSPt code and
computes the susceptibility for the single-orbital model. The module is
executed by selecting the superperturbation solver in the input file of the
RSPt code. In order to be integrated and run properly, it only requires
small modifications of the related existing code. In addition to the routine
that computes the susceptibility, the module contains routines that make
out a good foundation for building it into a superperturbation solver.

4.2 The Susceptibility

The susceptibility is verified by comparing the results with a Matlab
implementation of an analytical expression for the single-orbital model,
where the permutations of the creation and annihilation operators with
their respective sign are written explicitly. This confirms that the data
from the existing code is treated correctly and that the structure of the
computed susceptibility is correct. The analytical expression was derived
from equation (3) and is found in the appendix. As shown in Figures 6-8,
the computed susceptibility decreases by 1

ω
for ν 6= ν ′ as expected. Since

the computed susceptibility depends on four orbital and three frequency
variables, it has been visualized in three dimensions by plotting the
non-zero elements determined by the orbitals versus two frequencies and
keeping the third frequency fixed at 0. Each orbital either contains an
electron with spin up (↑) or spin down (↓).
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5 Conclusion and Discussion

By employing suitable approximations of the physics by different methods,
and combinations thereof, one can drastically reduce the complexity of the
problem and still produce a result that correctly portrays the nature of
the original problem. The combination of LDA, ED and superperturbation
is a good example of that. LDA captures the essential physics of the
electrons with a low level of interaction. ED contributes with the essential
physics of the interacting electrons by including a finite amount of bath
orbitals. The solution from ED adequately describes the properties of
non-metallic materials, which have more localized electrons that are prone
to stay put rather than jumping to another atom. The density of states
of such materials is characterized by having distinctive peaks, meaning
that the states that the electrons can occupy does not overlap and can
be approximated by a discrete set of states. Metals, however, have a
density of states with less distinctive peaks in general and cannot be
approximated by a discrete set of states. This is because the states that
the electrons can occupy are overlapping. By applying superperturbation
to the solution of ED, one perturbs the solution so that it properly
describes the sought system. This means that it opens way for studying
materials of all kinds, with weakly or strongly correlated electrons.
But this does not come for free; superperturbation is computationally
expensive and needs to be implemented efficiently. The susceptibility is
one of the parts that requires the most time and memory.
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5.1 Improvements and future work

The current implementation that computes the susceptibility is serial,
meaning that it would only utilize one processor when executed on a
parallel machine with multiple cores. It would be highly beneficial to
parallelize the code, since many parts of the code can be run independently
and also that most of the existing RSPt code is parallelized using MPI.
The susceptibility is also stored as a dense array, even though it is sparse.
Other sparse arrays in the RSPt code are represented in compressed sparse
format, meaning that only the non-zero elements are stored and all the
zeros are discarded. There are efficient routines that perform operations
on arrays in compressed sparse format, meaning that the computational
time of elements that are zero is saved. By storing the susceptibility in
the same manner, one would save a lot of memory and computational time.

Future work is to verify the susceptibility for multi-orbital problems and
to finalize the superperturbation solver. Finalizing the superperturbation
solver is probably the most convenient way to verify that the susceptibility
is correct, since the output of the solver are entities that have a lower
dimensionality than the susceptibility itself and are easier to relate to
other results.
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6 Appendix

6.1 Analytical Expression for the Susceptibility χ

Analytical expression for the susceptibility χ(α, β, γ, δ, ω1, ω2, ω3) for 1
impurity site and 0 bath sites, where α, β, γ, δ are orbitals and ω1, ω2, ω3

are Matsubara frequencies.

χ(↑, ↑, ↑, ↑, ω1, ω2, ω3) = χ(↓, ↓, ↓, ↓, ω1, ω2, ω3) =

+ φ(E0, E↑, E0, E↑, ω1, ω2, ω3)× 〈0|c↑|↑〉〈↑|c†↑|0〉〈0|c↑|↑〉〈↑|c
†
↑|0〉

+ φ(E↓, E↑↓, E↓, E↑↓, ω1, ω2, ω3)× 〈↓|c↑|↑↓〉〈↑↓|c†↑|↓〉〈↓|c↑|↑↓〉〈↑↓|c
†
↑|↓〉

− φ(E0, E↑, E0, E↑, ω3, ω2, ω1)× 〈0|c↑|↑〉〈↑|c†↑|0〉〈0|c↑|↑〉〈↑|c
†
↑|0〉

− φ(E↓, E↑↓, E↓, E↑↓, ω3, ω2, ω1)× 〈↓|c↑|↑↓〉〈↑↓|c†↑|↓〉〈↓|c↑|↑↓〉〈↑↓|c
†
↑|↓〉

χ(↑, ↑, ↓, ↓, ω1, ω2, ω3) = χ(↓, ↓, ↑, ↑, ω1, ω2, ω3) =

+ φ(E0, E↑, E0, E↓, ω1, ω2, ω3)× 〈0|c↑|↑〉〈↑|c†↑|0〉〈0|c↓|↓〉〈↓|c
†
↓|0〉

− φ(E0, E↑, E↑↓, E↓, ω1, ω3, ω2)× 〈0|c↑|↑〉〈↑|c↓|↑↓〉〈↑↓|c†↑|↓〉〈↓|c
†
↓|0〉

+ φ(E↑, E0, E↓, E↑↓, ω2, ω3, ω1)× 〈↑|c†↑|0〉〈0|c↓|↓〉〈↓|c↑|↑↓〉〈↑↓|c
†
↓|↑〉

− φ(E↑, E0, E↑, E↑↓, ω2, ω1, ω3)× 〈↑|c†↑|0〉〈0|c↑|↑〉〈↑|c↓|↑↓〉〈↑↓|c
†
↓|↑〉

+ φ(E0, E↓, E↑↓, E↓, ω3, ω1, ω2)× 〈0|c↓|↓〉〈↓|c↑|↑↓〉〈↑↓|c†↑|↓〉〈↓|c
†
↓|0〉

− φ(E↑, E↑↓, E↓, E↑↓, ω3, ω2, ω1)× 〈↑|c↓|↑↓〉〈↑↓|c†↑|↓〉〈↓|c↑|↑↓〉〈↑↓|c
†
↓|↑〉

χ(↑, ↓, ↓, ↑, ω1, ω2, ω3) = χ(↓, ↑, ↑, ↓, ω1, ω2, ω3) =

+ φ(E↓, E↑↓, E↑, E↑↓, ω1, ω2, ω3)× 〈↓|c↑|↑↓〉〈↑↓|c†↓|↑〉〈↑|c↓|↑↓〉〈↑↓|c
†
↑|↓〉

− φ(E0, E↑, E↑↓, E↑, ω1, ω3, ω2)× 〈0|c↑|↑〉〈↑|c↓|↑↓〉〈↑↓|c†↓|↑〉〈↑|c
†
↑|0〉

+ φ(E↓, E0, E↓, E↑↓, ω2, ω3, ω1)× 〈↓|c†↓|0〉〈0|c↓|↓〉〈↓|c↑|↑↓〉〈↑↓|c
†
↑|↓〉

− φ(E↓, E0, E↑, E↑↓, ω2, ω1, ω3)× 〈↓|c†↓|0〉〈0|c↑|↑〉〈↑|c↓|↑↓〉〈↑↓|c
†
↑|↓〉

+ φ(E0, E↓, E↑↓, E↑, ω3, ω1, ω2)× 〈0|c↓|↓〉〈↓|c↑|↑↓〉〈↑↓|c†↓|↑〉〈↑|c
†
↑|0〉

− φ(E0, E↓, E0, E↑, ω3, ω2, ω1)× 〈0|c↓|↓〉〈↓|c†↓|0〉〈0|c↑|↑〉〈↑|c
†
↑|0〉

where φ is given by
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φ(Ei, Ej, Ek, El,ω1, ω2, ω3) =
1

iω3 + Ek − El

[
1− δω2,−ω3δEj ,El

i(ω2 + ω3) + Ej − El

× (
e−

1
T
Ei + e−

1
T
Ej

iω1 + Ei − Ej
− e−

1
T
Ei + e−

1
T
El

i(ω1 + ω2 + ω3) + Ei − El

)

− 1

iω2 + Ej − Ek

(
e−

1
T
Ei + e−

1
T
Ej

iω1 + Ei − Ej
+ (1− δω1,−ω2δEi,Ek

)

× e−
1
T
Ek − e− 1

T
Ei

i(ω1 + ω2) + Ei − Ek
+

1

T
δω1,−ω2δEi,El

e−
1
T
Ei

)

+ δω2,−ω3δEj ,El

(
e−

1
T
Ei + e−

1
T
Ej

(iω1 + Ei − Ej)2
− e−

1
T
Ej

iω1 + Ei − Ej

)]
.

The remaining elements are equal to zero due to the nature of the
creation and annihilation operators.
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