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Abstract

The first main focus in the present project is to analyse the bound-
ary treatment of the nonlinear Korteweg-de Vries (KdV) equation.
The second main focus is to derive a suitable numerical solution using
a high-order finite difference method. Since the model involve third
derivatives in space, the numerical treatment of boundaries is highly
nontrivial. To aid the boundary treatment we will employ recently de-
rived high-order accurate third derivative finite difference operators.
The closures are based on the summation-by-parts (SBP) framework,
thereby guaranteeing linear stability. The boundary conditions are im-
posed using a penalty technique, leading to a nonlinear ODE system.
Since the non-linear KdV equation leads to very stiff ODE systems we
will compare the traditional way of time-integration using the fourth
order Runge-Kutta method with a novel SBP-SAT technique for time
discretisation of the non-linear ODE system.

1 Motivation

A robust and well-proven high-order finite difference methodology that en-
sures the strict stability of time-dependent partial differential equations (PDEs)
is the SBP-SAT method. The SBP-SAT method combines semi-discrete op-
erators that satisfy a summation-by-parts (SBP) formula [2], with physi-
cal boundary conditions implemented using the simultaneous approximation
term (SAT) method [1].

The SBP-SAT approach has so far been developed for problems involv-
ing first and second derivatives in space. However, there are many prob-
lems where higher-order derivatives are present. Some examples include the
Korteweg-de Vries and the Boussinesq equations (describing nonlinear water
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waves), soliton models in neuroscience [5], the Euler-Lagrange equation for
beams, and the Cahn-Hilliard equation which describes the process of phase
separation.

The main focus in the present study is to construct a high-order accurate
SBP-SAT approximation of the non-linear Korteweg-de Vries equation,

ut = uxxx + 6uux .

The following soliton solution

u(x, t) =
1
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)
is an analytic solution to KdV. c is the wave speed and a an arbitrary con-
stant.

sech(x) =
2 e−x

1 + e−2 x

The main mathematical and numerical difficulty of this model comes from
the boundary treatment due to the third derivative term. Another numer-
ical difficulty comes from the fact that this model leads to extremely stiff
semi-discrete models, after deriving a stable semi-discrete SBP-SAT model.
For details concerning the spatial discretisation see [4]. The SBP-SAT treat-
ment is traditionally only used to discretise the spatial derivatives, including
the boundary conditions which leads no a system of non-linear ODE. The
focus in the present project is to find an efficient time-integration for the
nonlinear ODE system, by employing a novel SBP-SAT technique (see [3]
for details) to discretise the time-derivative. To validate the efficiency we
will compare against the traditional technique of employing the fourth order
accurate Runge-Kutta method. The accuracy and stability properties will
be investigated mathematically using the energy method and later verified
against analytical solutions.

2 Project plan and time frame

• Start by a literature study to learn about the Korteweg-de Vries equa-
tion model (and other dispersive wave equation models) to understand
the underlying physics and applications (1 weeks).

• Analyze well-posedness using the energy method for the continuous
model (1 weeks).

• Derive a stable semi-discrete SBP-SAT approximation of well-posed
problems above (1 weeks).
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• Derive a stable SBP-SAT approximation (in time) of a linearised ver-
sion of the the non-linear ODE system in the previous step (1 weeks).

• Derive a stable SBP-SAT approximation (in time) of the non-linear
ODE system in the previous step (1 weeks). Remark: This will be
done if enough time!

• Verify the stability and accuracy against analytic solution solutions (1
weeks).

• Complete the report (3 weeks).

vtt = H(v, vt, t)
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