
BIG DATA IN GUI LISTS

Project in 
Computational Science

FALL 2020

Project members:
Shuyi Qin

Sotirios Chatzigeorgiou

Supervisor:
Jørn Letnes

(jletnes@slb.com)
Schlumberger

Background
Populating big data in GUI lists is a 
challenge, in this project we simulate 
different populate scenarios in the real 
world. What happens when some 
elements:
● slow the population? 
● new undefined characters appear?

Introduction
The GUI developed in WPF which 
uses as frontend XAML and as 
backend C#. In total 4 projects created 
to face the problem:

1. WPF application.
2. Data source generators.
3. Unit testing.
4. Performance measurements.

Generators
As elements in the populating list 
random strings were used. Generators 
created to compare the return with 
yield statement feature of C#. In 
addition, generators that include some 
percentage of elements with static 
extra overhead and elements that fail.

The generators where includes failures 
results in extremely slow  population 
when treated as exceptions to recover 
instead of direct recovery.

 NUnit  Testing
The population of big data in GUI is 
yielding particular challenges for 
developing test cases.

NUnit framework was used to test the 
functionality and measure the time of 
populating a list in GUI. NUnit tests 
that the defined percentage of:
● normal elements are correct.
● slow elements are correct.
● fail elements are correct.

GitHub Actions
Every push to the GitHub repository 
demands to be compilable and 
functional. GitHub actions give the 
possibility to the contributor to ensure 
the correctness of an updated version 
of the project. 

The workflow on GitHub actions is 
constructed to compile and test the 
project right in GitHub repository.

Conclusion
The project was based on the 
methodology of developing software 
that Schlumberger follows with unit 
testing and collaboration through 
GitHub.
 
Aside from methodology, the use of 
try-catch exceptions led to a great time 
overhead compared with the method 
without using exceptions which 
provides the same functionality when a 
fail element appears.

Time measurement comparison between try-catch exception method and without 
using exceptions method.

Big Data Populate GUI

Generators
● For loop

● Yield return

Problematic Cases

● Elements have delay

● Invalid elements

User Defined Proportion of 

Problematic Elements

User Input
● Number of elements
● Percentage of problematic

Statistic Results
● Delay time
● Number of failed and normal

Performance Report

The left part of the GUI consists of the different generators that are populating. The 
right part indicates how the user can control the generators and gain some metrics.

Exceptions


