
Multilayer network clustering 
via graph embedding

Implement and evaluate embedding techniques for the 
problem of multilayer network clustering. 

Problem is finding the “text of nodes” for a network with more than 
one layer.  Three ways suggested in [1]:

● Layer aggregation: Flatten the network into a 1D network 
(possibly weighted) and sample in the normal way. 

● Result aggregation: View each layer as a different network and 
embed it on its own. Then append the vectors to each other in 
order to get the full embedding. 

● Layer co-analysis: Sample paths in the network with a probability 
of jumping between layers.

We evaluate the results by measuring the adjusted mutual 
information (AMI) between the acquired clusterings and the given 
“ground truth”. A value of 0 implies sharing no information, and 1 
suggests identical clusterings, so a higher score is better.

The embedding approach is promising, but is fairly sensitive to 
the tuning of hyperparameters. A well-tuned algorithm could 
achieve better results than the benchmark algorithm glouvain2, 
but tuning the embedding algorithm for clustering in an 
unsupervised setting is an open problem. 
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Embed this “text of nodes” 
into a vector space, using a 

NLP technique called 
word2vec

AUCS (61 actors): 
Mutual interactions 
between some academics. 
The goal is to find the 
known research groups. 

DKpol (491 actors): 
Danish politicians’ 
interactions on Twitter. 
The  goal is to find the 
known political parties.

To find the clusters, 
we use KMeans on the 

embedding

Embeddings can be useful in a 
number of other applications, 
for example in link prediction!

Sidenote

Layer aggregation 
appears to be most robust 
under different sets of 
hyperparameters.

Result aggregation 
generally presents worse 
results.

Layer-co analysis shows 
the most promise, but is 
sensitive to the tuning.

Performance is worse for 
larger network:
Are more walks needed?
Or structural reasons?
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a -> d -> f -> d
d -> e -> a -> b
c -> b -> c -> a

…
…

f -> d -> e -> a
b -> a -> c -> b
d -> f -> d -> a

Performance for different sets of 
hyperparameters, compared to 

generalized Louvain method (green line).
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