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Abstract

Parallelisation of power system state estimation (PSSE), implemented
through the weighted least squares (WLS) method, is considered. The
system state variables are estimated from the measurement equations by
means of QR-factorisation through Givens rotations. The investigated
effects include those of column and row re-numbering, those of different
data types, and those of replacing classical Givens rotations with fast
Givens rotations.

While our original implementations are too slow to be of any practical
use in real-scale problems, the application of the approximate minimum
degree (AMD) ordering algorithm and parallelisation yields quite compet-
itive execution times.

Keywords: Power system state estimation, QR-factorization, Givens ro-
tations, parallelism, OpenMP

1 Introduction

Power system state estimation (PSSE) is an important part of power grid mon-
itoring systems, and may be implemented as weighted least squares (WLS)
state estimation. Such PSSE implementations thus estimate the system state
variables from a set of measurements with known (Gaussian) error probability
density distributions (pdf). These equations will henceforth be referred to as
the measurement equations. Similarly, the least squares methods, including the
WLS method, lead to systems of equations, known as the normal equations.

The measurement equations consist of one equation per measurement. In
order to emphasise precise measurements, each equation is multiplied by the in-
verse standard deviation of the error of that particular measurement. While this
increases the relative weight of the more reliable measurements, it also deterio-
rates the conditioning of the normal equations. This is particularly important
when the measurement error may be considered to be zero, e.g. when power
flows or injections may be considered to be known exactly. A simple example is
an unloaded transmission line, where the power flow must be zero.

In many important cases the normal equations obtained by PSSE are poorly
conditioned. However, direct QR-factorisation of the measurement equations
yields a matrix equation involving only the Cholesky factor of the matrix in
the normal equations. The condition number is thereby reduced to the square
root of the original condition number. The QR-factorisation may be performed
through Givens rotations, Householder reflections, and the classical and modi-
fied Gram-Schmidt orthogonalisation methods.

The classical Gram-Schmidt orthogonalisation method is well known to be
numerically unstable (Demmel [1] p. 108, Golub and Van Loan [2] p. 231)
and thus inefficient, as it requires frequent re-orthogonalisation. The modi-
fied Gram-Schmidt orthogonalisation method, represents an improvement to its
classical counterpart, but may still yield poorly orthogonalised Q-matrices. For
instance, Golub and Van Loan [2] (p. 232) point out that the deviation from or-
thogonality of the modified Gram-Schmidt orthogonalisation method is a factor
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j�j larger than for standard Householder reflections, where j�j � 1 is the matrix
condition number. Those methods are thus unsuitable for poorly conditioned
systems (� >> 1), and will accordingly not be considered further.

QR-factorisations of large sparse matrices, by means of Householder reflec-
tions, are considered in some depth by Matstoms [3].

Standard Givens rotations are notoriously slow and about half as efficient as
Householder reflections (Demmel [1] p. 123) for full matrices. A very attractive
feature, however, is their numerical robustness. Furthermore, improved (fast
Givens) algorithms exist (e.g. Appendix B in Monticelli [4]), where the number
of multiplications has been reduced from four to two and all (or almost all)
square root calculations have been suppressed. Thus Vempati et al. [5] demon-
strate that the QR-factorisation approach, based on fast Givens rotations, may
achieve performance comparable to the normal equations method. An additional
advantage of Givens rotation is their feature of sequentially adding/removing
measurements without re-orthogonalisation, which is very useful for bad-data
analysis.

There also exist fast Householder reflections (Diniz [6] p. 351 and refs. [27]
through [29] therein). While their applicability certainly is worth studying, such
an undertaking would fall beyond the scope of this report.

Vempati et al. [5] also discuss row-oriented (see also Soman et al. [7] p. 90ff)
and column-oriented ([7] p. 92ff) approaches, and conclude that row-oriented
elimination is more efficient. However, they do not present any data in direct
support of that conclusion. Instead, it appears to be based on the argument, that
by row-wise elimination, repetitive fetching and storing of partially processed
rows can be avoided. Moreover, by storing partially processed rows, interme-
diate fill-ins (see Section 4) must be accommodated. This requires continual
allocation and deallocation of memory for those fill-ins. Yet, some support may
be drawn from their Table V, which indicates that their row-oriented scheme
is some 40 percent faster than the normal equations method. While this Table
says nothing explicitly about the column-oriented approach, the mere fact that
performance comparable to the normal equations method could be achieved by
Givens rotations, represents a major improvement. They also compare different
row- and column-ordering schemes, and identify row-ordering by the minimum
degree criterion and column-ordering according to maximum column number as
the most efficient ordering scheme (in cpu time). No improvement is obtained
by including average path length minimisation row-ordering as a tie-breaker in
the row-ordering scheme. Schemes using the row count (i.e. the number of non-
vanishing elements on the row) or the sum of the column numbers as tie-breaks,
yield essentially indistinguishable improvements.

In contrast, Pandian et al. [8], conclude that a row-oriented approach may be
faster. These authors utilise the VPAIR (Variable pivot strategy for sequencing
of row PAIRs) row-ordering method and the minimum degree algorithm (MDA)
for the column permutation.

The matrices which appear in PSSE are extremely sparse, so the data struc-
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ture is expected to have a major effect on performance. This project thus aims
to develop sparse QR-factorisation routines for several data structures from
scratch, compare the efficiency of those routines, and analyse the results. In
addition to the comparison of the different data structures, different processing
methods will be compared, i.e. row- and column-oriented schemes.

The implementation is in C with OpenMP.

This report is organised as follows. Section 2 presents the fundamentals of
PSSE, with particular reference to the application of QR-factorisation. The
following Section discusses the standard and fast Givens rotations. Issues re-
lated to sparsity preservation are addressed in Section 4. In Section 5 row- and
column-oriented elimination schemes are considered. The two data-structures
investigated in the report are presented in Section 6. The parallelisation is
discussed in Section 7. The results are listed in Section 8 and a discussion is
provided in Section 9.

2 Fundamentals of power system state estima-

tion

2.1 Power flow problems

In a power system the state variables are the voltage amplitudes Ei and phase
angles �i = arg(Ei), where Ei is the voltage at bus i. In order to estimate the
power system state from a set of power measurements, the state variables must
be related to the power flow. Thus a few comments on the power flow problems
are in order before discussing PSSE.

In a linear grid currents and voltages are related through the equationI = Y E; (1)

where I is the vector of currents Ii entering bus i, E is the vector of voltagesEi at bus i, and Y is the network matrix. However, problems involving the
determination of the system state from given power fluxes are quite non-linear,
as the apparent power Si entering node i is essentially the product of voltage
and current Si � Pi + jQi = EiXk Y �i;kE�k ; (2)

where Pi is the real power, Qi is the real power, j =
p�1 is the imaginary

unit, and the asterisk denotes complex conjugation. This kind of problem is
thus quadratically non-linear in the voltage amplitudes and trigonometrically
non-linear in the phase angles. This conclusion may be clarified by separating
real and complex parts in Yi;k = Gi;k + jBi;k to obtainPi =

Xk jEijjEk j [Gi;k cos(�i � �k) + Bi;k sin(�i � �k)]
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(3)Qi =
Xk jEijjEkj [Gi;k sin(�i � �k)�Bi;k cos(�i � �k)] :

No general analytical solution to these equations exists. In order to solve
the full power flow equations, iterative methods like Gauss-Seidel or Newton-
Raphson usually have to be employed.

A number of simplifying approximations may be made, leading to methods
such as the decoupled power flow and the “DC” power flow. These methods are
discussed by e.g. Wood and Wollenberg [9] (Chapter 4), and will not be dwelled
upon here. A point of some importance, however, is that the linearised equations
used in the Newton-Raphson method, depend on the current approximation of
the state, so the Jacobian matrix must be continually recalculated. A similar
situation occurs in power state estimation. PSSE is accordingly an iterative
procedure, where the updated power system state is used to update the full AC
system (3), or the simplified equations (e.g. the “DC” power flow equations),
until the solution has converged. This report is not concerned with this itera-
tion, but restricts itself to studying the performance of the QR-factorisation of
given measurement matrices H (below). The full iterative procedure is listed
by Vempati et al. [5].

2.2 Power system state estimation

The non-linear equations, for the power flow through the power meters, may be
formally cast in the form fi(x�) = zi; (4)

where fi(x) is the theoretical value of the power flux through meter i for the
power system state x, x� is the true state, and zi is the reading on meter i. This
may be linearised about the current power system state estimate x. The result
is the system (the measurement equations)H∆x = ∆z; (5)

where H is the measurement matrix, ∆x = x� � x is the correction to the cur-
rent state x, and ∆z is the measurement vector. The latter is obtained as the
difference between the actual measurement and the power flux corresponding to
the current state x, i.e. ∆zi = zi � fi(x).

Since the quality of the instrumentation varies, measurement errors are as-
sumed to be random and follow the Gaussian distribution N(0; Ri). In order to
weight measurements according to reliability, the ith equation in (5) is multi-
plied by the reciprocal to the standard deviation for the corresponding meter,

i.e. R�1=2i H1∆x = ∆z1; (6)
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where H1 = R�1=2H and ∆z1 = R�1=2∆z, and R�1=2 is the diagonal matrix

with element R�1=2i at position (i; i).
The WLS algorithm minimises the functiong(∆x) = (H1∆x�∆z1)T (H1∆x�∆z1); (7)

with the solution given by the normal equationsHT
1 H1∆x = HT

1 ∆z1: (8)

A more careful derivation of this result is provided by Wood and Wollenberg [9]
(Chapter 12.3), employing the maximum likelihood principle.

Although the above discussion may give the impression that only power
measurements occur, measurements of other quantities, e.g. voltage, can also
be included.

2.3 Estimation through QR-factorisation

In certain cases the normal equations are ill-conditioned. Then the fact that
the condition number of the Cholesky factor LHT

1 H1 = LTL; (9)

where L is upper triangular, is much smaller than that of the normal equations
matrix HT

1 H1, i.e. �(L) =
q�(HT

1 H1) << �(HT
1 H1); (10)

can be used. The important point is now that the the renormalised measurement
matrix H1 may be QR-decomposed asH1 = QU = Q � L

0(m�n)�n � ; (11)

where m is the number of measurements and n < m is the number of state
variables, Q is an m�m orthogonal matrix (QTQ = QQT = Im, Im being them�m identity matrix), U is an upper triangular m� n matrix, and 0(m�n)�n
is the (m� n)� n zero matrix. Equation (8) can now be rewritten asLTL∆x = LT∆ẑ , L∆x = ∆ẑ; (12)

where ∆ẑ consists of the first n elements in QT∆z1.

This represents a considerable improvement of the conditioning of the equa-
tion for the correction ∆x.

As discussed below, the columns in Q may appear with arbitrary signs, how-
ever, so in some positions U may differ from L by sign.
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This report thus adopts PSSE standard notation, where the factors in the
QR-factorisation are denoted by Q and U , and R is the diagonal matrix of in-
verse measurement variances.

The observation that Q essentially consists of the Cholesky factor L is of
some value, as it allows the use of symbolic Cholesky factorisation to predict
the non-zeros in matrix U . It is only entirely true if HT

1 H1 is SPD (symmetric
positive definite), however. Attempts to apply symbolic Cholesky factorisation
to HT

1 H1, which were only PSD (positive semi definite), led to minor discrepan-
cies between the structure of U . Those differences vanished when a small SPD
part 10�12I was added to HT

1 H1.

2.4 A note on the uniqueness of the QR-factorisation

The QR-factorisation of any full column rank m�n matrix A is mathematically
equivalent to the Gram-Schmidt orthogonalisation procedure in a vector space
spanned by the columns in A. The columns of matrix Q then constitute an
orthonormal basis of the linear vector space spanned by the columns in A whileU is the coefficient matrixA(:; j) =

jXk=0

Q(:; k)U(k; j) (13)

where 0 � j < n and Matlab’s colon notation is used. Thus, assuming theQ(:; k) have been determined uniquely for 0 � k < j � 1, it follows U(i; j) =Q(:; i)TA(:; j), i.e. the elements in U are uniquely determined. The remainderQ(:; j)U(j; j) = A(:; j)� j�1Xk=0

Q(:; k)U(k; j) (14)

is now orthogonal to the previously determined Q(:; k) (0 � k < j � 1). It may
thus be incorporated in the orthonormal basis, by normalisation. This deter-
mines U(j; j) and Q(:; j) to within the factor �1. Induction now proves that
the elements in U are determined to within the sign, and uniquely determined
if the diagonal elements are positive. No diagonal element in U can vanish, asU(j; j) = 0 would contradict the full rank property, by eq. (14).

The statement above that U equals the Cholesky factor is accordingly only
true to within the signs of its elements. This is of no consequence for the posi-
tions of the non-zeros.

On the other hand, if A is not full column rank, there exist constants k
such that

Pk kQ(:; k) = 0. Then alsoA(:; n) =

n�1Xk=0

Q(:; k)(U(k; n) + k); (15)

so the QR-factorisation is only unique (to within signs) for full column rank
matrices.
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The matrix HT
1 H1, in the normal equations (8), is guaranteed to be SPD.

Otherwise a unique solution would not exist. Hence the QR-factorisation is
unique, and the structure of U can be obtained by symbolic Cholesky factori-
sation.

3 The Givens rotation

3.1 The standard Givens rotation

The Givens rotation mathematically expresses the fact that for any m�n matrixA (m � n), element Ai;j may be zeroed through multiplication with the m�m
orthogonal matrixQ(i;j) =

266664 Ij�1 0 0 0 0
0  0 s 0
0 0 Ii�j�1 0 0
0 �s 0  0
0 0 0 0 Im�i 377775 (16)

where  and s are scalars, Ik is the k � k identity matrix, zeros represent zero
block matrices, and i > j was assumed, as this report is concerned with the
elimination of sub-diagonal elements. In the product matrix A0 = Q(i;j)A all
rows are identical to the corresponding row in A, except rows j and i for which
the linear combinations A0j;: = Aj;: + sAi;:A0i;: = �sAj;: + Ai;: (17)

holds, where the colon subscript denotes any column index between 0 and m�1
(with C-style indexation). Row i is said to be rotated with row j. Since Q(i;j)

is devised to eliminate A0i;j , orthogonality yields =
Aj;jqA2i;j + A2j;j and s =

Ai;jqA2i;j + A2j;j : (18)

Givens rotations thus eliminate selected elements and is thus suitable for
sparse matrix computations. Thus the full QR-factorisation is accomplished by
zeroing all sub-diagonal elements through Givens rotations. That is, starting
with Q = Im and U = A, for each non-vanishing sub-diagonal element (i; j) in U
update U := Q(i;j)U and Q := QQ(i;j)T . In practice, however, Q is generally a
full matrix. In many applications it is not explicitly required, and therefore not
necessary to store. In other cases Q is needed to compute ẑ in eq. (12). This
computation may be done simultaneously with the QR-factorisation, i.e. by
initialising ẑ = z1 and successively updating ẑ := Q(i;j)T ẑ. In those situations
where Q is really needed, e.g. where the state is updated several times using
the same QR-factorisation, Q is best saved as the  and s values and indices
(i; j) of the elements eliminated in the individual rotations.
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3.2 The fast Givens rotation

The standard Givens rotation requires four multiplications per non-vanishing
row element plus two divisions and one square root calculation. Especially the
divisions and square roots are quite time consuming. The following discussion
of the fast Givens rotation will follow that of Monticelli [4].

The central idea is to keep the square roots in a diagonal matrix D which
never enters the elimination of the sub-diagonal entities. Specifically, if jj � jsj,
rows and columns j and i in Q(i;j), are factorised as (the c-transform)�  s�s  � =

�  0
0  �� 1 t�t 1

� ; (19)

where t = s=. Here the square root is only needed to compute  in the first
factor, while the actual elimination is performed by the second factor, which
only depends on t = Ai;j=Aj;j . If, on the other hand, jj < jsj, the s-transform�  s�s  � =

� s 0
0 s �� k 1�1 k � ; (20)

where k = =s is used. QR-factorisation through Givens rotations, however,
involves repeated application of the factors in eqs. (19) and (20). In order
to bring the diagonal factors to the left of the t- and k-factors, the following
observations also need to be made�

1 t�t 1

� � dj 0
0 di � =

� dj 0
0 di � � 1 tdi=dj�tdj=di 1

�
(21)

and � k 1�1 k � � dj 0
0 di � =

� di 0
0 dj � � kdj=di 1�1 kdi=dj � ; (22)

where di and dj are the elements at positions (i; i) and (j; j) in the diagonal
matrix D.

Hence the elimination of element Ai;j requires t = diAi;j=(djAj;j) and is
performed by matrix �

1 p�q 1

�
=

�
1 tdi=dj�tdj=di 1

�
(23)

in the c-transform. Thus p = d2iAi;j=(d2jAj;j) and q = Ai;j=Aj;j , while the

diagonal matrix D is updated through d2i := 2d2i and d2j := 2d2j , where2 = 1=(1 + t2).

For the s-transform, similarly, k = djAj;j=(diAi;j),� p 1�1 q � =

� kdj=di 1�1 kdi=dj � ; (24)p = d2jAj;j=(d2iAi;j) and q = Aj;j=Ai;j , while the diagonal matrix D is updated

through d2i := s2d2j and d2j := s2d2i , where s2 = 1=(1 + k2). As all updates
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involve only squares of the diagonal matrix elements, no square roots need to
be computed. Since the zeroing is performed by matrices (23) and (24), only
two multiplications are required per non-zero element; multiplication with unity
is trivial. The fast Givens rotation involves at least three divisions, which is one
more than standard Givens.

4 Preservation of sparsity

During QR-factorisation certain elements change from zero to some non-zero
value, so called “fill-ins”. Fill-ins are unavoidable, yet undesirable, since they
reduce the sparsity of the matrix and thus increase the work, and generally in-
volve the creation and insertion of new elements in the matrix data structure.

The latter complication may be alleviated by performing a symbolic Cholesky
factorisation of the normal equation matrix HT

1 H1. This yields the sparsity
structure of the factor U . Fill-ins in U may thus be avoided by initiating U
with the final sparsity structure.

The amount of fill-in can also be controlled by permuting (or reordering) rows
and columns. For example, matrices A1 and A2 below produce very different
amounts of fillA1 =

266664 x x x x xx x 0 0 0x 0 x 0 0x 0 0 x 0x 0 0 0 x 377775 and A2 =

266664 x 0 0 0 x
0 x 0 0 x
0 0 x 0 x
0 0 0 x xx x x x x 377775 : (25)

In A1 fill-ins will occur at all positions, while in A2 no fill-in takes place. Some
fill-ins are permanent while others are intermediate and will eventually be elim-
inated.

Rows are permuted by multiplication from the left with some row permu-
tation matrix Pr, while columns are permuted by multiplication from the right
with some column permutation matrix P. The sparsity structure of U is given
by the symbolic Cholesky factor of (PrH1P)T (PrH1P) � P T HT

1 H1P, and
thus is unaffected by the row-ordering. The number of intermediate fill-ins inH depends on both the row- and column-orderings, however.

In this report columns are first permuted in order to preserve sparsity of U ,
using a minimum degree ordering algorithm. Rows are then ordered to minimise
the number of intermediate fill-ins.

We also try the approximate minimum degree (AMD) ordering algorithm,
available in the AMD-library. Since this was done late in the project, the in-
vestigation of the effects on performance from using this ordering is somewhat
incomplete. The AMD-library is available from http://www.cise.ufl.edu-

/research/sparse/amd, and further details on the algorithm can be found in
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[10], [11] and [12].

Further discussions and alternative methods are provided in Section 2.3 in
Matstoms [3].

5 Row- and column-oriented elimination schemes

Sub-diagonal elements may be zeroed column by column (column-oriented scheme)
or row by row (row-oriented scheme). The fundamentals of those schemes are
presented below.

5.1 Column-oriented scheme

Before initiating the rotations, columns are permuted to conserve sparsity based
on the sparsity structure of HT

1 H1. The ordering of the processing of the rows is
decided continually through the orthogonalisation. Since the sparsity structure
of the rows changes during the process, the row that produces the least number
of fill-ins is selected, at each stage. Since sub-diagonal elements are eliminated
column by column, partially processed rows are repeatedly retrieved, rotated,
and stored. Each row-store must accommodate new fill-ins and deallocate mem-
ory for zeroed elements.

5.2 Row-oriented scheme

As in column-wise elimination, the sparsity structure of HT
1 H1 is used to per-

mute the columns to conserve sparsity. In contrast, however, sparsity is also
conserved by means of initial row-ordering. An additional feature is the fact
that matrix U is initiated, through symbolic Cholesky factorisation, as the null
matrix with the structure of the Cholesky factor of HT

1 H1. The QR-factorisation
then proceeds as the orthogonalisation of� UH1

� ; (26)

and Q is now an (m + n)� (m + n). Since Q either is not saved at all, or as a
sequence of indices of eliminated entries and the corresponding - and s-values,
the increase in size has no practical consequences.

Furthermore, fill-ins in H1 never occur, as the rows are copied and the copy

is then rotated with rows in U until fully processed. There is thus no need to
store and retrieve partially processed rows in H1. All fill-ins take place in the
copy.

Row-ordering is simple and performed only once, before initiating the ro-
tations. Rows may, for example, be sorted in order of ascending number of
non-zeros, highest column-index, or column-index sum. In the column-oriented
approach, rows must be compared with other rows throughout the process, in
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order to minimise the number of fill-ins.

Also, new measurements are easily incorporated in the row-oriented ap-
proach, by simply processing the resulting additional row.

6 Sparse matrix formats

6.1 CRS-format

The CRS (compressed row storage) format defines a sparse m�n matrix through
three arrays:

values – the values (listed row-wise) of the elements in its sparsity struc-
ture.

columns – the column indices (listed row-wise) of the elements in its spar-
sity structure.

rowIndex – the indices of the first elements (listed row-wise) on each row.
The last element is the number of entries (using C-style indexation) or
that number plus one (using Fortran-style indexation).

The CRS format is a row-major (or compressed row) format. For com-
pleteness it should also be mentioned that an analogous column-major (or com-
pressed column) format exists with obvious modifications, where array values is
as above but an array rows replaces array columns, and an array columnIndex

replaces array rowIndex. This format is called the CCS (compressed column
storage) format. Further information on CRS and CCS can be found in e.g. [13].

There also exists many other storage formats similar to CRS and CCS, e.g.
special variants for symmetric matrices, banded matrices and block matrices.
Due to the nature of the matrices encountered in PSSE, none of these specialised
formats are of interest to us and have not been considered further in this report.

6.2 Binary search tree format

While fill-ins cause a considerable amount of re-shuffling in array based formats,
like the CRS-format above, this problem is less severe for balanced binary trees,
e.g. Sedgewick [14]. For this reason balanced binary trees are also investigated
as a storage format.

7 Parallelisation

7.1 Column-oriented approach

In column-oriented Givens, as described in Section 5, elements are eliminated
column-by-column and rows are thus only partially processed for each fully
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processed column. When sparse matrices are used, the matrix may need to be
rebuilt several times due to new fill-ins. This can be a problem in a parallel
implementation when using matrix formats where non-zero elements are stored
in a linear array and auxiliary index-arrays are used. Since the insertion of a
new non-zero requires (at least a large fraction of) the matrix to be rebuilt,
insertion becomes a strictly sequential operation. For this reason, we do not
address the parallelisation of column-oriented Givens.

7.2 Row-oriented approach

Row-oriented Givens, as described in Section 5, has several advantages for a
parallel implementation.� Threads can be assigned its own set of rows, and each row will be fully

processed by the thread it was assigned to.� Intermediate fill-ins occur only in each thread’s local copy of a row, not
in U and H .

The pseudo-code (with the OpenMP-pragma included) for the algorithm
implemented, is the following:

Algorithm 1 Givens(H;U)

1: #PRAGMA OMP PARALLEL FOR
2: for i = 0 to n do

3: Hi  COPY(H,i)
4: for j = 0 to m do

5: if Hi(j) 6= 0 then

6: LOCK(U , j)
7: ROTATE(Hi, U , j)
8: UNLOCK(U , j)
9: end if

10: end for

11: end for

7.3 Parallel implementation

We have implemented the row-oriented approach described in Section 7.2. The
implementations use the CRS-storage format, described in Section 6.1 and the
binary tree format, described in Section 6.2, respectively. In the implementation
where the CRS-storage format is used, the CCS-format is also used when loading
a matrix from file and performing column-reordering, and a linked list format
when performing the symbolic factorization, but all matrices are converted back
into CRS format before the function where the actual QR-factorization takes
place is called.

The locking-mechanism, for preventing threads from using the same row inU at the same time, was implemented in the following way:

while (1) {

#pragma omp critical
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{

if (U_lock[j] == UNLOCKED)

U_lock[j] = own_lock; // Lock row j in U with this thread’s lock.

}

if (U_lock[j] == own_lock)

break;

}

The variable own lock is assigned a unique value for each row in H , thus no
threads will share this value. When a thread is done, it unlocks the row with:

#pragma omp critical

{

U_lock[j] = UNLOCKED;

}

The program performs the following steps before the Givens rotations are
started:� The H matrix is loaded from its file into a matrix represented in the

internal matrix storage format.� The columns in H are ordered according to the MD-ordering on HTH .� The structure of U is computed by symbolic factorisation of H .� The initial null-matrix U is constructed with the structure found by the
symbolic factorisation.� The rows in H are reordered to minimize intermediate fill-in during the
factorisation.

8 Results

During the project, we had access to the following parallel computer systems at
Uppmax:

Ngorongoro – The Ngorongoro-system is a Sun Fire 15K server, running
Solaris 9. We have conducted our tests on its duma-domain, which has 4
1300 MHz UltraSPARC IV+ dual core (CMP) CPUs and 16 GB of RAM.

Isis – The Isis-cluster consists of 200 IBM x3455 servers, each such node
having two dual core AMD Opteron 2220 CPUs and 4-16 GB of RAM.
The cluster is running Scientific Linux.

Grad – The Grad-cluster consists of 56 nodes, each node having two quad
core Intel Xeon E5240 CPUs and 16 GB of RAM. The cluster is running
Scientific Linux.

All tests of the parallel implementations were conducted on these three sys-
tems. On Ngorongoro, the Sun Studio 11 C-compiler was used to compile the
code. On Isis and Grad, the code was compiled with the Portland Group C-
compiler. More detailed information on the systems, with the exception of the
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Table 1: Execution times in s for random test matrices in absence of initial
column and row reordering.

symbolic non-zeros
size of H1 Cholesky QR in U

(1,000 , 600 , 4,000) 2:84� 100 4:62� 101 114,679
(2,000 , 1,200 , 8,000) 2:23� 101 4:03� 102 467,724

Table 2: Execution times in s for fast Givens rotations and random test matrices
in presence of initial column and row reordering.

column symbolic non-zeros
size of H1 permutation Cholesky QR in U

(1,000 , 600 , 4,000) 1:72� 10�1 6:41� 10�1 8:80� 100 43,232
(2,000 , 1,200 , 8,000) 6:10� 10�1 4:30� 100 7:69� 101 158,766
(4,000 , 2,400 , 16,000) 3:72� 100 3:23� 101 7:38� 102 626,183

Grad-cluster (which is still under construction, at this time of writing), can be
found at http://www.uppmax.uu.se/systems.

Some tests of sequential implementations has also been done on other sys-
tems, such as the authors’ laptops.

All source-code for this project, with instructions, Makefiles and test data,
can be found via http://www.it.uu.se/edu/course/homepage/projektTDB.

8.1 Effects of column- and row permutation

Tables 1 and 2 show the effect of initial column and row permutation on the per-
formance of the binary tree representation, with fast Givens rotations. Table 1
thus lists execution times, for the symbolic Cholesky and the QR-factorisations,
as well as the number of non-zeros in the resulting U -factor, when initial col-
umn and row permutation are not performed on a random test matrix H1 of size
(N; 0:6N; 4N), where the first position (N) represents the number of rows, the
second (0:6N) is the number of columns, and the third (4N) is the number of
non-zero entries. In Table 2 column and row permutation have been performed,
the time consumption of the column permutation is also presented. No essential
improvements due to row permutation could be detected. Results are quoted for
sequential single runs on an Acer Aspire 5002 WLMI computer, but variations
are within one or a few percent.

It is quite clear that the most time consuming part is the proper Cholesky
factorisation. The most time demanding part here are the operations associated
with memory accesses for retrieval and storage of matrix elements. Some ideas

14



Table 3: Execution times in s for standard Givens rotations and random test
matrices in presence of initial column and row reordering.

column symbolic non-zeros
size of H1 permutation Cholesky QR in U

(1,000 , 600 , 4,000) 1:72� 10�1 6:25� 10�1 9:12� 100 43,232
(2,000 , 1,200 , 8,000) 6:10� 10�1 4:30� 100 7:78� 101 158,766
(4,000 , 2,400 , 16,000) 3:72� 100 3:21� 101 7:51� 102 626,183

to enhance the performance of these functions exist, e.g. use of direct pointers
to tree nodes representing the matrix elements. Those ideas have not yet been
tested, however. As will be seen in the next Section, the flop count is, however,
a minor consideration.

It can also be seen that although column permutation consumes compara-
tively little time, it pays off handsomely, by reducing the time requirement of
the proper QR-transformation by a factor of about 5. Column permutation is
particularly profitable as it only needs to be performed once.

The fact that the symbolic Cholesky factorisation is rather time consuming
should be considered against the fact that it only needs to be performed once
per network. Neither column permutation nor symbolic Cholesky factorisation
are therefore included in the performance studies below.

There are several variants of column and row permutations. Here columns
are ordered according to the minimum degree criterion, i.e. in ascending order
of number of non-zeros in the corresponding columns in HTH . It remains to in-
vestigate alternative orderings and to introduce tie-breakers. Rows are ordered
in ascending order of column index, as well as number of non-zeros of last ele-
ment, on the row. In both cases, row permutation is of no or little consequence.
Tie-breakers are not investigated.

8.2 Performance of standard and fast Givens rotations

Table 3 presents the effect of replacing fast Givens rotations with standard
Givens. The latter is only a few percent faster than the latter.

Row- and column permutations were applied, but the conclusion, that fast
Givens rotations only reduces the numerical work insignificantly, holds even if
no permutations take place.
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Figure 1: The structure of the YCheng/psse0-matrix. This matrix is a realistic
model matrix for PSSE.

8.3 Profiling

8.3.1 Binary tree implementation

An indication of the time spent in the various parts of the binary tree imple-
mentation can be obtained by profiling its sequential version. The results listed
below are for the YCheng/psse0 [15] matrix (a full rank 26,722 � 11,028 matrix
with 102,432 non-zeros, see fig. 1)

duma> prof Tree

%Time Seconds Cumsecs #Calls msec/call Name

41.5 95.65 95.65584096683 0.0002 setEntry

22.7 52.20 147.85563817528 0.0001 getRowsOnColPr

15.8 36.46 184.31348529252 0.0001 getColsOnRowPr

7.0 16.07 200.38 1 16070. QRStd
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6.5 14.90 215.28 1 14900. QR

4.7 10.72 226.001521602819 0.0000 _mcount

0.9 2.13 228.1318550250 0.0001 insertPr

0.6 1.42 229.55 2 710. symbChol

0.1 0.31 229.86 4015752 0.0001 getRowsAndColsPr

0.1 0.26 230.12 754716 0.0003 inTree

0.1 0.16 230.28 860242 0.0002 deallocateME

0.0 0.03 230.31 931742 0.0000 insert

0.0 0.02 230.33 1 20. permuteCols

0.0 0.01 230.34 46630 0.0002 mergeSort

0.0 0.00 230.34 1 0. cmpMatr

0.0 0.00 230.34 1 0. main

0.0 0.00 230.34 1 0. readInputFile

0.0 0.00 230.34 1 0. permuteRows

0.0 0.00 230.34 1 0. calcMTMSymb

0.0 0.00 230.34 14 0.0 getRowsAndCols

The importance of an appropriate data structure and efficient data access
is thus demonstrated by the fact that some 80 percent of the execution time is
spent on retrieving and storing data. In particular, function setEntry, which
accounts for approximately 40 percent of the entire time consumption, is used
to save processed rows in U . It utilises a tree search for each stored element, and
therefore has a considerable potential for further optimisation. Moreover, func-
tion getRowsOnColPr is the recursive part of a function that localises the row
numbers of the non-zeros on a column. It is only used, however, in the column
permutation. Since this can be put outside the main iteration, it only needs to
be done once. Its relative time consumption in an iterative procedure, involving
a large number of QR-factorisations, is thus small. Considerably larger gains
may be accomplished by optimising function getColsOnRowPr. This function,
which is used in order to fetch non-zeros on a given row, is used repeatedly in
the QR-factorisations.

The numerical work is primarily done in functions QR and QRStd, which only
account for about 7 percent of the execution time each. The implementation of
fast Givens rotations, is thus hardly worth while.

8.3.2 CRS-based implementation

As for the binary tree based implementation, the profiling for the CRS-based
implementation is done with the YCheng/psse0-matrix as input matrix.

When the MD-ordering is used, the CRS-based implementation yields the
following profile:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

59.12 106.50 106.50 102430 0.00 0.00 insert_new_element
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18.31 139.48 32.98 _mcount2

12.68 162.33 22.85 1550400457 0.00 0.00 get_element

5.00 171.34 9.01 226474083 0.00 0.00 set_element_noalloc

3.15 177.02 5.68 1 5.68 24.58 qr_givens

0.53 177.98 0.96 2 0.48 4.83 symmat_std_to_sym

0.29 178.51 0.53 1 0.53 111.41 symmat_perm_cols

0.24 178.94 0.43 34441656 0.00 0.00 try_insert

0.24 179.38 0.43 __rouinit

0.15 179.64 0.27 __pgio_environ

0.07 179.78 0.14 __rouexit

0.05 179.86 0.08 __set_element_noallocEND

0.04 179.93 0.07 1581529 0.00 0.00 insert_new_element_noalloc

0.04 180.00 0.07 1 0.07 0.50 symmat_symb_chol

0.02 180.03 0.03 102432 0.00 0.00 set_element

0.01 180.05 0.02 1122593 0.00 0.00 symmat_insert_nonzero

0.01 180.07 0.02 1 0.02 0.02 create_nm_from_t_symb

0.01 180.09 0.01 __try_insertEND

0.01 180.10 0.01 336033 0.00 0.00 md_comp

0.01 180.11 0.01 1 0.01 0.01 perm_rows

0.01 180.12 0.01 1 0.01 0.01 read_sparse_rowwise

0.01 180.13 0.01 1 0.01 0.02 symmat_symb_lt_mtm

0.01 180.14 0.01 1 0.01 0.02 symmat_symb_lt_mtm2

0.00 180.15 0.01 __set_elementEND

0.00 180.15 0.00 75500 0.00 0.00 free_nonzeros

0.00 180.15 0.00 26726 0.00 0.00 free_matrix

0.00 180.15 0.00 4 0.00 0.00 symmat_alloc

0.00 180.15 0.00 4 0.00 0.00 symmat_free

0.00 180.15 0.00 1 0.00 0.00 alloc_matrix

0.00 180.15 0.00 1 0.00 146.22 main

0.00 180.15 0.00 1 0.00 0.00 mergeSort

Using the AMD-ordering instead of MD-ordering one obtains the profile:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

37.35 13.99 13.99 1 13.99 13.99 reorder_columns_amd

33.84 26.66 12.68 _mcount2

17.49 33.22 6.55 595190627 0.00 0.00 get_element

5.15 35.14 1.93 63505738 0.00 0.00 set_element_noalloc

4.00 36.64 1.50 1 1.50 6.80 qr_givens

1.04 37.03 0.39 1 0.39 3.63 symmat_std_to_sym

0.44 37.20 0.17 __rouinit

0.29 37.31 0.11 __pgio_environ

0.19 37.38 0.07 1973646 0.00 0.00 insert_new_element_noalloc

0.11 37.42 0.04 __rouexit

0.06 37.44 0.02 __set_element_noallocEND

0.03 37.45 0.01 1 0.01 0.01 create_nm_from_t_symb
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0.03 37.46 0.01 amd_2

0.00 37.46 0.00 589457 0.00 0.00 try_insert

0.00 37.46 0.00 413779 0.00 0.00 symmat_insert_nonzero

0.00 37.46 0.00 37750 0.00 0.00 free_nonzeros

0.00 37.46 0.00 26724 0.00 0.00 free_matrix

0.00 37.46 0.00 2 0.00 0.00 free_matrix_cco

0.00 37.46 0.00 2 0.00 0.00 symmat_alloc

0.00 37.46 0.00 2 0.00 0.00 symmat_free

0.00 37.46 0.00 1 0.00 0.00 flip_ccs_to_crs

0.00 37.46 0.00 1 0.00 24.44 main

0.00 37.46 0.00 1 0.00 0.00 read_sparse_cco

0.00 37.46 0.00 1 0.00 0.00 symmat_symb_chol

0.00 37.46 0.00 1 0.00 0.00 symmat_symb_lt_mtm

We may note that the function that performs column reordering, symmat perm cols,
has a very long execution time in the MD-version. However, this is because the
column reordering is done on a matrix in CRS-format, instead of a matrix in
CCS-format. This has been changed in the version of this implementation where
AMD-ordering is used, with the result that execution time for this step is con-
siderably lower.

It is difficult to compare these two versions of the implementation from these
profiles, since the main-function has been altered between the different versions.
Row reordering, for example, was omitted in the version where AMD-ordering is
used. To get more comparable profiles, the MD-ordering should be moved into
the AMD-version and replace the call to amd order (not visible in the profile
above).

8.4 Effect of number of threads

8.4.1 CRS-implementation

Both the CRS- and tree-versions have been parallelised. For the former, ap-
plication to the YCheng/psse0 [15] matrix suggests that execution times are
almost inversely proportional to the number of threads, see fig. 2.

Equivalently, fig. 3 indicates that speedup is virtually proportional to the
number of threads.

However, a programming error, in the function where column-ordering onH is computed from minimum degree ordering (MD-ordering) on HTH , re-
sulted in a column-order for which symbolic factorization on H gave an U with
4,677,319 non-zero elements. When this error was corrected, column-ordering
followed by symbolic factorization instead gave an U with 276,473 non-zeros.
At that time, we no longer had access to the Grad-cluster, so subsequent tests
have been conducted on Isis, for up to 4 threads. See Figure 4 for tests of the
parallel implementation with MD-ordering of columns prior to the factorization.

We have also tested the parallel CRS-based implementation with AMD-
ordering, see Figure 5. The AMD-ordering resulted in a U with only 70,803
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Figure 2: Execution times for the original CRS-based parallel implementation,
with inadequate column reordering of columns due to a programming error,
when factorizing the YCheng/psse0-matrix on a node on Grad. Execution times
are for performing the Givens rotations only.
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Figure 3: Speedup, as a function of number of threads, for the original CRS-
based parallel implementation, with inadequate column reordering of columns
due to a programming error, when factorizing the YCheng/psse0-matrix on a
node on Grad. Speedup is measured for performing the Givens rotations only.
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Figure 4: Execution times for the CRS-based parallel implementation, with
corrected column reordering, when factorizing the YCheng/psse0-matrix on a
node on Isis and using different OpenMP schemes for partitioning the rows
in H between the threads. The MD-ordering prior to the factorization has
been corrected, and the structure of U computed by symbolic factorization has
276,473 non-zeros.

non-zeros.

In the version with MD-ordering, the OpenMP scheme dynamic provides
the fastest execution times. The dynamic-scheme prevents, at least to some
extent, threads from leaping far ahead of the others, so row-ordering prior to
the factorization may still have effect when this scheme is used.

In the version with AMD-ordering, the dynamic-scheme gives slower execu-
tion times than the static-schemes. A possible explanation for this may be
that no row-ordering was done prior to the factorization, and thus there was no
benefit in processing the rows in order. Communication is also higher for the
dynamic-scheme, so the overhead from such communication may become visible
when the number of non-zeros in U are few and rows in H can be processed
faster.

The maximum speedup achieved is approximately 2.5 on 4 threads, for both
the MD- and AMD-version.

8.4.2 Tree implementation

The parallelisation of the binary tree algorithm exhibits very different features
from that of the original CRS-version. While serial execution times on the duma-
domain on the Ngorongoro multiprocessor computer at Uppsala university are
reduced to 50 - 60 s, the introduction of OpenMP pragmas still results in exe-
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Figure 5: Execution times for the CRS-based parallel implementation, with
column reordering based on AMD-ordering instead of the MD-ordering used
in previous versions, when factorizing the YCheng/psse0-matrix on a node on
Isis and using different OpenMP schemes for partitioning the rows in H be-
tween the threads. This version uses AMD- instead of MD-ordering prior to the
factorization, and the structure of U computed by symbolic factorization has
70,803 non-zeros.

cution times of at least 200 s. The reasons for this are not understood. Figure
6 shows two series of measurements of execution time texe as a function of the
number of threads n. Very long execution times are obtained for n = 3 threads,
and even for n = 8 threads the parallel implementation is around four time
slower than the serial one.

Further reductions in the time demand for a single sequential QR-factorisation
to 30 - 40 s are obtained on a node on the Isis-cluster at UPPMAX. Figure
7 thus presents two series of measurements of the execution times for the QR-
factorisation on Isis.

These results are quite different. The time consumption of the sequential
and single thread parallel implementations are quite similar. There is also a
significant speedup for up to four threads, where a QR-factorisation requires
about 16 - 18 s. For higher numbers of threads, however, a sharp decline in
efficiency occurs.

8.5 Comparison between using CRS- and binary tree for-

mats with row-oriented schemes

By employing the tree structure to the YCheng/psse0 matrix, execution times of
about 130 s for the column permutation, 60 s for the symbolic Cholesky factori-
sation, and 297 s for the fast Givens based QR-factorisation are obtained, with
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Figure 6: Execution time texe of parallelised QR-factorisation as a function of
number of threads n on duma.
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Figure 7: Execution time texe of parallelised QR-factorisation as a function of
number of threads n on Isis.
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a sequential implementation on an Acer Aspire 5002 WLMI machine. Replacing
fast Givens with standard Givens rotations, increased execution times to 317 s.
The maximum norm difference between the results from the two methods was
around 5:5� 10�10, indicating that both methods converge to the same result.

This is an improvement by a factor of about six, compared to the original
CRS-implementation, which was run on a node on the Grad-cluster.

As mentioned above, further improvements were obtained on computers
Ngorongoro and Isis. Performance is accordingly very machine dependent,
so the data quoted above must be read with this fact in mind.

Figure 7 reports results with dynamic scheduling, and are quite similar to
the corresponding results in fig. 4.

A point of some interest is the observation that considerably longer execution
times would be obtained for the much smaller random matrices used in Tables 1
through 3, by increasing the row number N . Those matrices were constructed to
possess approximately four elements per row, just as the YCheng/psse0-matrix.
This is a vivid illustration of the fact that matrix structure is as important as
matrix size. The resulting U -factor has 276,473 non-zeros. Comparison with
Tables 1 through 3 suggests that this number is a crucial parameter for the
execution time.

9 Discussion and conclusions

While a comparison between row- and column-oriented methods was included in
the project description, time only admitted the implementation of row-oriented
schemes. This comparison must accordingly be left to later investigations. Be-
cause column-oriented elimination leaves partially processed rows for each fully
processed column, a parallel version can be tricky to implement for sparse ma-
trices, especially if one wishes to avoid re-building the matrix during the factor-
ization.

Substantial enhancements of performance due to initial column permutation
are achieved. Permutation according to AMD-ordering proves to be especially
efficient in preserving the sparsity of U , and this also results in faster symbolic
factorization. No improvements can be seen when row permutation is applied.
This does not, however, mean that row reordering is without effect, only that no
effects can be discerned for the rather limited variations that have been tested.
Yet, in parallelised implementations, threads tend to select rows in a somewhat
randomised order, depending on when they complete processing of previous
rows. This reduces any gain due to row reordering. The introduction of barriers
would counteract such effects but, on the other hand, reduce performance as
threads would be idle, while waiting for the last ones to catch up.

For the original CRS-implementation almost perfect scalability is observed,
as shown in figs. 2 and 3. This is not the case for the tree-implementation,
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where on the duma-domain on Ngorongoro parallelisation implies considerably
longer execution times and poor scalability, cf. fig. 6. On Isis no increase in
execution time can be detected, and for small numbers of threads a significant
improvement of efficiency is observed.

Replacement of standard Givens rotations with fast Givens rotations only
yields slight improvements. In the binary tree implementation, fast Givens rota-
tions also tends to leave residual round-off errors at the positions of eliminated
fill-ins. For some reason, this occurs less frequently for standard Givens rota-
tions. Hence, components emerging from the rotations with values smaller than
some threshold (e.g. 1 � 10�12), are set to zero. In order to clarify the point
about the eliminated fill-ins, the Givens rotation is devised to set the first ele-
ment in the rotated row in H zero. It is, therefore, always set to zero to save
flops and avoid round-off errors. However, additional entries in the rotated row
occasionally also vanish, and as they may reside as round-off errors, all elements
in the rotated row in H are set to zero if smaller than some threshold value.

The most time consuming operations are the fetching and storage of data.
At least in the binary tree implementations, better routines for the storage of
rotated rows in U and track-keeping of the first non-zero element in the row
should be investigated.
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