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Abstract 
The importance of applied biosciences and 

biotechnology in research and industry is rapidly increasing. 
Mathematical methods and concepts play a crucial role in these 
fields. As we are entering the post-genomic era, models-of-data, 
such as mining and filtering methods must be complemented 
with models-of-processes that explain relationships between 
genomic information and phenomena at biochemical and 
physiological levels.  

Matrix-assisted laser desorption/ionization mass 
spectrometric imaging (MALDI-MSI) is an up-and-coming 
technology allowing true label-free molecular imaging of flat 
samples like biological tissue sections. A given MALDI-MSI 
data set containing the induced state of Parkinson’s disease, 
initiates the interest in finding interesting markers of the 
disease. Manual exploration of such data is time consuming 
and requires a good idea on what to look for to be plausible. It 
should be possible to automate this process to some extent by 
using tools from the field of statistical analysis and thus 
instigate our project. Comparison of regions found in both 
halves of the brain to find interesting signatures related to the 
Parkinson’s disease in the processed data of spectral peaks 
corresponding to protein expressions. 

Feature selection was used to isolate protein expressions 
and reduce the dimension of the spectra. Further reduction into 
signatures representing regions was performed through a 
popular and a novel method of Projection Pursuit (PP) , 
Principal Component Analysis (PCA) and Independent 
Component Analysis (ICA). An attempt to match and improve 
these regions by removing asymmetries in the source data was 
also done.  

Results reveal that a relatively small subset of the 
original MALDI-TOF spectra can be used to produce well 
defined regions using PCA and ICA. ICA will produce superior 
region definitions to PCA and it is possible to refine and 
analyze these regions to some extent  without any use of spatial 
information in the algorithms. 
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1 Introduction 

This report was produced as a result of the work done during completion of 
Scientific Computing Advanced Course, directed by the Department of Information 
Technology at Uppsala University, first semester of 2008. 

The problem under survey originates from the field of biology, where recent 
techniques allow detailed screening for proteins within tissue samples. These 
spectra of proteins can be investigated manually by an experienced scientist to 
identify important signatures. In this case sample sets taken consist of slices taken 
from rat brains with a state similar to Parkinson’s induced in one of its halves. The 
process of investigating the full extent of these detailed spectra requires a large 
amount of work and has to be remade to some extent for every sample set. A way 
to automate this process to some extent would be desirable and this project is an 
attempt to explore this possibility. 

The general idea of this implementation builds on using a definition of 
regions considered to be symmetric in structure over the two halves of the sample 
set to compare a list of protein intensities. As a product of this comparison a list of 
relative differences in intensities will be produced, which hopefully will aid in the 
exploration of the full spectra. 

 

Fig 1: The basic components of the process. 

Resources supplied for this project consist of data sets that have received a 
moderate amount of pre-processing, such as baseline adjustment. As no regions are 
given and the data still needed further processing to produce meaningful results 
using a reasonable amount of computational resources, the project was decided to 
involve a study of the data and acquisition process as well as statistical data 
processing to identify proteins and regions before comparison. The implementation 
is based on a commercial software for mathematical programming together with 
packages for well known and general methods. 

Protein distribution 

Brain regions 

Comparison List 
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Fig 2: The basic approach attempted. 

1.1 Supplied resources and assumptions 

The supplied datasets were delivered in a binary format fulfilling the specifications 
of a, more or less, open format commonly used in this area of research (Analyze 
7.5), preprocessing with baseline adjustment had already been made. Tissue 
samples consisted of a small slice from a part of a rats brain, more or less 
symmetric over the centre of the brain. Data was received from three diseased as 
well as three control rats, with a sample size of grids from 23 by 9 to 36 by 13 and 
a dimension of around 22000 to 32000 per sample.  

Samples used consist of brain tissue from rats with a state similar to 
Parkinson’s disease induced in only one of the half of the brain; the goal has been 
to provide a sample symmetric in size over the two halves. Control samples of rats 
with no disease have been provided as well.  

1.2 Data acquisition using MALDI-IMS 

The technique used to produce the protein spectra investigated in this project is 
called Matrix Assisted Laser Desorption/Ionization (MALDI) Imaging Mass 
Spectrometry (IMS). It is a technique often used for mass spectrometry of 
biological tissue samples and is capable of registering a wide spectra of masses 
through time-of-flight measurements (TOF). 

Matrix of crystallized molecules is applied to the sample to protect the 
fragile bio molecules. As a laser pulse hit the sample the matrix will ionize while 
absorbing most of the energy. Bio molecules will thus be left intact. The ionized 
matrix will transfer charge to the bio molecules which allow them to be accelerated 
and later registered as they hit a sensor. Time-of-flight data is registered, which can 
be translated into mass ratio data. 

The sample sets acquired for this project originates from a thin slice of a 
brain-half symmetric region of a rat brain. This region includes the Substantia 
Nigra and has been prepared for MALDI-IMS according to recommended 
techniques [3]. Animals used as source for these samples consist of six rats out of 
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which three had a state similar to Parkinson’s disease induced in one half of the 
brain. 

The resulting dimension of each sample set consist of equally spaced 
rectangular grids with dimensions of 23 to 36 by 9 by 12 samples. Each sample 
contains a spectra of  about 22500 to 32000 discrete measurements of m/z values. 

Data produced by the MALDI-IMS does not directly translate into protein 
intensities which means some form of pre-processing has to undertaken to select 
and group valid parts of the spectra. 

1.3 Protein expression signatures 

Protein expression is a subcomponent of gene expression. It consists of the stages 
after DNA has been translated into amino acid chains, which are ultimately folded 
into proteins. Protein expression is commonly used by proteomics researchers to 
denote the measurement of the presence and abundance of one or more proteins in 
a particular cell or tissue. From the acquired data these are what one need to be 
investigating. 

Traditional brain regions have not been marked within the sample sets. 
Matching regions will be required for later comparison. The assumption will be 
that there are different setups of proteins across regions, which could be interpreted 
as their signatures. These signatures would be used to identify regions. As these 
signatures has not been supplied for the sample sets used, each data set will have to 
be investigated to extract possible signatures. 

1.4 MATLAB 

MATLAB is a commercial software by The MathWorks, providing a numerical 
programming environment and high-level programming language. It provides 
many features for matrix manipulation as well as plotting and various popular 
algorithms are implemented to work with this software. 

To reduce the overhead of setting up a programming environment capable of 
handling the wide range of methods required MATLAB has been chosen as the 
target of the implementation. It is available and coherent across a wide range of 
popular computing platforms and has been widely adopted by scientists and 
developers. 

2 Theory  

2.1 Feature selection of protein expressions 

The spectrum of each sample contain a significantly larger amount of information 
than can be expected to be realistic, this additional information results from the 
nature of the acquisition device as well as examined samples. We will seek to 
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reduce the spectra into a subset of features that are more likely to be relevant in this 
study. This task constitutes the essence of feature selection. 

Ideally every peak would be completely resolved at a single point in time. 
This however is not the case due to variations caused by distribution based 
characteristics of some variables related to the data acquisition. Noise must also be 
considered as a factor. 

The two approaches attempted within the scope of this project are based on 
subset selection using filtering, which makes them relatively simple and 
computationally low in cost. Using a wrapper would arguably produce better 
results but would also require more assumptions on the data as well as more time in 
development. 

2.1.1 MALDI-TOF sample spectra 

As mentioned in earlier sections the resulting spectra from the data acquisition does 
not directly translate into distinct protein expression intensities, instead there are 
some uncertainties in the location of each protein expression. Ignoring the factor of 
detection errors in the device there are still uncertainties that result from the 
stochastic nature of the measurements such as the initial distribution of speeds of 
the induced ions and the existence of isotopes as well as differences in the amount 
of bindings with water molecules. The distributions associated with the first two 
sources has been investigated to be normal and binomial respectively [8]. 

Each isotope will produce a bell shaped feature in the spectra with a total 
intensity following a binomial distribution of the associated protein expression (Fig 
3). In the provided sample sets the variance of initial ion speeds are large compared 
to the weight difference of isotopes, yielding overlapping bell shapes. 

7400 7800
0

750

1500

 

Fig 3: Close view of the largest peak of the spectra and its surroundings. 

With the idea that noise will flatten out as the number of samples grow 
larger and the hope that the sample set will provide a large enough base of 
measurements to ensure a stable average and that individual peaks will take a solid 
shape, we hope to be able to identify peak locations by investigating the average 
spectra of the sample set. 

 
Drift will produce smooth transition. 
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2.1.2 Contiguous thresholding 

Looking at the shape of the spectra [fig3] one can argue that since the bell shaped 
peaks associated with one protein expression will be poorly resolved, thus not 
diving to a value close to zero between peaks, it is possible to define a subset of 
variables as the maxima of every contiguous region of values all larger than a 
certain threshold. Although the idea is naïve and not very general it should provide 
a decent result for at least the most prominent peaks, under the assumption that the 
data samples are of similar nature. 

The optimization algorithm in this case is case is remarkably simple and is 
very easy to implement in a programming environment. D represent the index of 
the selected variables. 
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For each variable selected the borders of the contiguous regions, k and l, are 
registered. 

 

 

Fig 4: Threshold level marked with a dashed line. 

2.1.3 Local maxima extraction 

Another approach that would separate isotopes is to define the subset to be the 
maxima of each bell shaped peak in the spectra. The advantage would be that the 
method is not dependent on the spectrum being poorly resolved to perform as 
designed. This approach is hard to formalize but relatively straight forward to 
implement. To isolate the binomial forms of each protein expression the method 
can be reapplied to the feature selected set. 
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For each variable selected the borders of the peaks, k and l, are registered. 
 

 

Fig 5: Every maxima marked with dotted lines. 

The methods presented in this section are very sensitive to error caused by noise, 
drift in the samples as well as the very stochastical nature of the peaks the methods 
rely on. To remedy this uncertainty to some extent it is possible to use more 
samples from the same distribution, instead of selecting a distinct spectra within a 
peak we will seek the average or area under the peak. The resulting variables are no 
longer a subset of the original variables, instead it is a transformation of them 
which is the essence of Feature Extraction. 

2.1.4 Wavelet smoothing 

Due to the stochastic nature of the spectra small variations in the shape of the peaks 
are a natural occurrence, this poses a problem to the local maxima extraction 
approach as it will yield many false features. To remedy this problem a wavelet 
decomposition can be used to filter out the components of the highest frequency 
without distorting the overall shape of the spectra. 

2.2 Feature extraction of protein signatures 

In general, within a sample set, the number of identified features using the feature 
selection is still much larger than the number of regions that can actually be 
distinguished. To narrow down the number of features even further one can apply a 
transform of the space spanned by the data set and again apply a selection of sub 
features that characterize the full spectrum of the data. This process of using the 
full spectra to produce a representation is called feature extraction.  

There are different approaches to feature extraction which affords a vast 
spectra of different results. We have chosen to apply relatively general methods 
such as Principal Component Analysis (PCA) and Independent Component 
Analysis (ICA) as they will produce understandable results for most types of data. 
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2.2.1 Principal component analysis 

PCA in its essence is a linear transform of a dataset, which will produce an 
uncorrelated set of new variables. These new variable will be associated with a set 
of vectors that together represent an orthogonal basis for the dataset. Another 
important property of this transform is the fact that the variables will be ranked 
based on how much of the original dataset they can represent. 

PCA belongs to a class of methods based on Projection Pursuit (PP), which 
searches for lower dimensional subspaces onto which data is projected. In the case 
of PCA one will seek the to project the data onto the direction of the most variance, 
these vectors will be called the principal components. This can be done using a 
least squares based regression line search or by finding the eigenvalues and vectors 
of the covariance matrix. The latter approach is the key of the Hotelling transform 
([1], pp 319-329). 

In essence PCA consists of finding the transform: 

xAT GG
=ξ  

Where ξ
G

is the principal components and xG  is a vector whose elements are 
the variables subject to the transform. The matrix A consist of the eigenvectors of 
the estimated covariance matrix, these correspond to the stationary values that 
maximize the variance of ξ

G
.  

The eigenvectors of the covariance matrix can be obtained through Singular 
Value Decomposition (SVD) ([1], pp 326-327), where the right singular vectors 
will correspond to the eigenvectors of the estimated covariance matrix ( XX T ). 
Where X is the normalized, data matrix adjusted to have zero mean.  

2.2.2 Independent component analysis 

ICA belongs to a class of blind source separation (BSS) methods for separating 
additive data components into its underlying source signals. Just as PCA it is based 
on PP but instead of projecting the data onto the direction of the most variance one 
wishes to find the directions of maximum statistical independency. Thus the 
method is based on the assumption that the “source signals” are statistically 
independent. In summary, one wish to find the set of estimated signal components 
that can represent the original data while maximizing independence. 

A common measurement of independence is to estimate how far the 
projected data is from a normal (Gaussian) distribution, non-Gaussian. This is 
motivated by the central limit theorem and is likely a good choice in cases where 
no special assumptions can be made regarding the data. Non-Gaussian has been the 
choice of optimization criteria for the implementation used in this project. 

Pre-processing the data, such as whitening the variables are used to reduce 
the complexity of the algorithm and can be performed using PCA. 

Thus given a sequence of observations of a set of variables, estimate the 
“unmixing matrix” and the corresponding original source signals. Based on 
maximizing the non-Gaussianness of the sources. 
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xWs GG
=  

One approach consist of finding w such that )(max xwJ T  with 1=w , 
where J is essentially a measure of non-Gaussianness (negentrophy). More 
information on the subject can be found in [7]. 

2.3 Region definition by segmentation 

By producing intensity maps over the contribution of each protein signature over 
the sample set one can get an idea of how the samples relate to one another. Under 
the assumption that identifiable regions in the brain have a similar protein structure 
one can search for spatially and intensity map related samples. 
 

 

Fig 6: A symmetric region with associated spectra. 

The number of regions is assumed to be small compared to the dimension of 
protein expressions. This fact motivates the use only a small subset of the results of 
the feature extraction methods suggested in the previous section. 

To group the spatially distributed samples into regions, assumption on their 
nature must be taken. Each regions is assumed to be spatially connected, more or 
less homogenous and be large enough to be accurately resolved by the data 
acquisition process. Ideally each region would be uniquely defined by its own 
signature, this however cannot be certain to hold as more than one region can have 
the same protein structure. Instead an intensity map targeted for region definition 
would be desired to consist of fully homogenous regions with jumps at the border 
toward the neighbouring regions. Defining regions from this can be done by using 
a sliding threshold or a modified watershed [2], creating a hierarchy of merging 
regions. 
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Fig 7: Sliding threshold levels. 

To be able to compare the data across the two halves of the brain the datasets 
need to be partitioned into corresponding sets. Parameters to compare across these 
sets consist of: Size of the region, intensity distribution, shape and relative location. 
The last two parameters being hard to consider due to the limited information 
provided about the possible natural/induced deformations and differences as well 
as noise and loss of information from discretizing the grid. 

The approach used is a rough simplification of the above. The threshold used 
will be static and located at zero intensity, symbolizing the deficiency/excess of a 
protein signature across the sample set. Identification of the subsets corresponding 
to the two halves of the brain will be done manually. 

The regions will be matched across the two halves of the brain. Regions that 
display symmetric qualities will be used to determine a deviation plot over the peak 
spectra of the samples they correspond to. 

2.3.1 Non-spatial segmentation and comparison 

As suggested above, the method of choice for segmenting the intensity maps into 
regions is based on one threshold. This leaves two segments, regions, for every 
intensity map. This is a low number but for a small sample set containing only a 
few regions it is a viable choice. 

The size of the region will be specified by the number of samples on either 
side of the segmentation threshold. The intensity distribution will be based on the 
distance to the threshold. 

These regions do not have any spatial restrictions attached and as such they 
cannot be differentiated from one another by shape or relative locations. This is a 
large drawback and may result in false positives when matching regions.  

If one can assume most spectra in a data set to be symmetric however an 
additional condition for evaluating symmetry can be found. Using the footprint of 
the region in the domain of the sample set one can compare the weighted average 
intensity of every spectra. If the number of spectra that differ under these weights 
is very large the region can be assumed to be asymmetric. 

Level 1 
Level 2 
Level 3 
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Thus, comparison can be based on: The size, intensity distribution and the 
footprint. 

The threshold used for this project has been fixed to zero due to the nature of 
the intensity maps of the extracted features. The distance from zero ymbolizing the 
deficiency/excess of a protein signature across the sample set. 

2.3.2 Successive symmetric region improvement 

The extracted protein signatures depend directly on the original subset of the 
spectra. Since we wish to find regions that display symmetric qualities across the 
two halves of the brain 

It is likely that the feature extraction process would produce signatures 
tending more towards symmetric regions if asymmetric qualities could be removed 
from the original variables. Spectra that from the beginning show major differences 
in average intensity level across the two halves can be removed, but the effect is 
limited as the average tend to hide local differences. 

To remedy the problem of local differences slipping through an initial region 
definition can be done using feature extraction on the slightly improved dataset. 
This initial definition will hopefully reveal a set of intensity maps with region-like 
symmetric qualities. Using the set of symmetric regions extracted from the 
intensity maps one can compare the weighted average intensity of every spectra 
over the associated samples. The spectra that differ greatly over any of the 
symmetric regions will be removed from the dataset. 

Repeating this procedure until no more spectra can be removed or until the 
limit of what is an acceptable dataset is reached. 

2.3.3 Regional comparison 

When the region definition is satisfactory, the these regions can be used to evaluate 
the deviation of the original spectra of protein expressions based on the differences 
across the region’s footprint over the two halves of the brain. The resulting quotas 
can be used to create a deviation plots conveying information on spectra that might 
be of interest for further study. 

3 Results 

3.1 Feature Selection 

The methods developed for this task takes parameters corresponding to low-pass 
filtering of the dataset, setting a minimum intensity of a maxima to be recognized 
as well as a threshold value for the total area of a peak. Before applying this 
implementation an estimate of identifiable peaks were taken from 24[3] as around 
1400 distinct peaks, attempts was made to get values close to this measure as well 
as explore more restrictive choices of parameters. 
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The spectra of each sample set is in the scales of over 20000 parameters (Fig 
8), exploring every one of them would be very hard. In this case however there is a 
clear spatial dependence among the samples making it possible to review a spectra 
over the full sample set as an image. As an example the highlighted section of Fig 
8 is depicted as images (intensity maps) of every successive spectra in Fig 9. Many 
of these images look the very similar, which is a product of the fact that the spectra 
doesn’t directly reflect the protein expressions. 
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Fig 8: Full MALDI-TOF spectra, highlighted region used for closer study. 

 

Fig 9: Intensity maps assiciated with every spectra higlighted in Fig 8. 

Applying the least restrictive approach of feature selection attempted in this 
report will greatly reduce the redundancy in the set of features. The peaks 
identified using local maxima extraction on the highlighted region of Fig 8 are 
marked in Fig 10. The resulting data set has been reduced from over 800 spectra to 
around 50, while still retaining the important classes of images as can be seen in 
Fig 11. There is still some minor tendencies to redundancy in this set however. 
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Fig 10: Extracted features, local maxima, marked with x. 

 

Fig 11: Intensity maps associated with extracted features of Fig 10. 

Exploring the simplest approach to the feature selection on the same set as in 
the above discussion we can see that the number of selected spectra is lower (Fig 
12). The contiguous threshold will not identify the smallest peaks as they fall 
below the threshold value and will group peaks that do not resolve well enough to 
break the condition of contiguous regions. In this case the result is somewhat better 
than local maxima as the smaller peaks sensitive to noise are removed and 
redundancy is very slightly improved (Fig 13). 

As some peaks identified by the approach can consist of several poorly 
resolved sub-peaks one can apply a transform to the feature set by averaging over 
the span of the peak. This transform would ideally improve the quality of the image 
by using a larger set of measurements from the same statistical distribution. 
Improvements are minor at best in this case as seen in Fig 14. 
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Fig 12: Extracted features, contiguous threshold, marked with x. 

 

Fig 13: Intensity maps associated with extracted features of Fig 12. 
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Fig 14: Intensity maps of the average, transformed, intensities of the contiguous threshold. 

The most restrictive approach used is the local maxima selection applied 
twice in succession to isolate the peaks of every cluster of sub-peaks. As can be 
seen the number of isolated features are reduced considerably and the redundancy 
of the data is as good as gone. This is at a cost however as can be seen in Fig 16 as 
some features meld together, the somewhat clear definition of substantia nigra is 
lost. However this feature only corresponded to one isolated peak of Fig 11 which 
may indicate it is either insignificant or misplaced and may appear somewhere else 
in the spectra as a better resolved peak. Using a transformation on this feature set is 
more rewarding than the previous attempt as can be seen in Fig 17. 
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Fig 15: Features extracted, double-pass local maxima, marked with o. 

 

Fig 16: Intensity maps associated with extracted features of Fig 15. 

 

Fig 17: Intensity maps of the average, transformed, intensities of double-pass local maxima. 

To add additional constraints to the methods investigated threshold values 
for identifiable peak sizes have been implemented, which allow filtering of too 
small peaks in both maximum height and transformed size. Low pass filtering is 
also applied to filter out smaller variations within the peaks. Depending on the 
choice of parameters and method the number of features can be chosen in a range 
of about 2000 to 200 which is a reduction of between 90% and 99% of the original 
spectra. 

The overview conducted in this section suggest that a the more restrictive 
approach may exclude features that can be identified with less restriction but noise 
levels and the number of replicated patterns are lower. Before deciding on a set of 
parameters the resulting feature set should be carefully reviewed. 
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Careful investigation of the extracted features over the full spectra suggest 
that a large number of the identified peaks found using local maxima extraction  
are located in the upper end of the range. This part of the spectra is dominated by 
low intensities which are more sensitive to noise as well as drift among the samples. 
The intensity images in this region are also hard to visually interpret due to 
seemingly random variations which suggest that classification errors will occur. 

3.2 Feature Extraction 

All the data used in this section has been normalized and had its mean adjusted to 
zero to produce good results using both PCA and ICA. 

PCA will have a natural order of it’s components based on the amount of the 
total variance they represent. This makes it very useful for finding a reduced 
dimension representation of the data, as can be seen in Fig 18 and Fig 19 the 
components projected in the lower end do not display any understandable features. 
Fig 18 display the result of using the full spectra (22000 spectra) of a sample set to 
produce the principal components. Compared to Fig 19, which display the result of 
PCA on a very restrictive peak selection (117 peaks), there are actually about the 
same amount of visually distinguishable regions. 

 

Fig 18: PCA applied to normalized data, corresponding to the unreduced original spectra. 

 

Fig 19: PCA applied to a very restrictive set of selected features. 

After using the set of PCA components to whiten the data, ICA can be used 
to find the statistically independent features. These components do not have a 
natural measurement of importance but instead tend to produce well defined 
regions over the full set of reduced variables. In Fig 20 the result of PCA displayed 
in Fig 18 is used to whiten the data and create a set of independent components. 
Regions are clear and some regions not apparent through PCA are well defined 
using ICA When using the very restrictive dataset as a basis for ICA one can see 
that the difference is slight here as well. 
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Fig 20: ICA used to improve the output of PCA, full original spectra. 

 

Fig 21: ICA applied to a very restrictive set of selected features. 

To conclude this section one can point out that while PCA will provide 
natural ranking of components, the number of features the method can successfully 
extract is very limited. ICA would be the natural choice if some tendencies towards 
redundancy are acceptable. Another interesting conclusion is the fact that a very 
small subset of the original spectra is capable of producing results almost 
indistinguishable from the original full spectra. While the protein expressions 
might need to be selected with less restriction to produce meaningful results to the 
scientist in the end, the basis for the region definition could be made up by a much 
smaller subset, which would speed up the algorithm considerably. 

3.3 Detected regions and symmetry 

As the basis of regional separation was chosen to be the zero, two sets of regions 
will be identified for each feature. Many parameter choices has been implemented 
for this algorithm due to the difficulty in defining a strict maximization criteria 
from the limited amount of available information. 

As described in the theory section symmetric regions can successively 
refined by removing asymmetric spectra through repeated feature extraction and 
regional comparison. The method will successively remove peaks that differ 
among matching regions, in the end resulting in an asymmetric and symmetric 
subset of the spectra. In this section one run through the algorithm will be 
presented and analyzed. 

The original data set consist of the 117 peaks partially displayed in Fig 23 
(asymmetric) and Fig 24 (symmetric). This run make use of ICA with a limit of 5 
components. The regions resulting from the first iteration of the algorithm can be 
observed in Fig 22, which already display quite symmetric qualities. 

After 10 iterations the algorithm terminates and 17 of the 117 peaks have 
been removed. In this case no symmetric regions were misclassified, but due to the 
inexact approach used there are cases when a few symmetric peaks will be lost. As 
can be seen by reviewing the symmetric spectra some asymmetric features still 
remain, but in this case it is usually better to chose the parameters to be restrictive 
to avoid a total collapse with almost every peak being removed. 
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Fig 22: Symmetric regions at the first iteration. 

 

Fig 23: Intensity maps of spectra classified as assymmetric. 

 

Fig 24: Intensity maps of spectra classified as symmetric. 

The final set of regions look much the same as the first iteration but slightly 
improved as one of the not fully symmetric regions has been removed.  

 

Fig 25: Symmetric regions at the last iteration. 

Using one of the more well refined regions the spectra in its footprint can be 
compared. The result is displayed in Fig 26 and Table 1. 



 19

10 20 30 40 50 60 70 80 90 100 110
−1

−0.5

0

0.5

1

 

Fig 26: Deviations in (restrictive) spectra found using a symmetric region. 

Peak index 

D
eviance 

O
riginal 
index 

1 -0.071 186 
2 -0.057 325 
3 -0.066 387 
4 -0.065 442 
5 -0.015 506 
6 0.087 581 
7 -0.061 628 
8 0.019 715 
9 -0.004 767 
10 0.057 813 
11 0.006 862 
12 -0.124 948 
13 -0.054 995 
14 -0.208 1055 
15 0.034 1122 
16 0.040 1191 
17 0.020 1239 
18 0.019 1289 
19 0.006 1363 
20 -0.014 1456 
21 -0.115 1567 
22 -0.110 1617 
23 0.082 1650 
24 -0.046 1765 
25 -0.285 1841 
26 0.048 1917 
27 -0.056 1956 
28 0.079 2053 
29 -0.081 2131 
30 0.036 2196 
31 -0.222 2258 
32 0.169 2288 
33 0.087 2321 
34 0.139 2423 
35 -0.027 2526 
36 -0.123 2648 
37 -0.032 2676 
38 -0.059 2730 

39 0.092 2767 
40 0.078 2906 
41 0.013 2962 
42 -0.159 3017 
43 -0.128 3121 
44 0.005 3259 
45 0.038 3302 
46 -0.266 3409 
47 0.130 3479 
48 0.187 3547 
49 0.094 3784 
50 -0.025 3828 
51 0.096 3921 
52 -0.173 4004 
53 0.137 4042 
54 0.107 4233 
55 -0.041 4304 
56 0.090 4362 
57 0.042 4435 
58 0.136 4505 
59 0.074 4554 
60 0.014 4618 
61 -0.104 4665 
62 0.060 4780 
63 -0.007 4853 
64 0.180 4913 
65 0.053 5004 
66 -0.018 5112 
67 0.025 5263 
68 0.209 5327 
69 -0.126 5505 
70 0.027 5666 
71 -0.019 5751 
72 0.047 5810 
73 0.218 5864 
74 0.040 6008 
75 0.013 6086 
76 0.097 6218 
77 -0.180 6327 
78 -0.154 6558 
79 0.219 6643 
80 0.038 6718 
81 0.145 6816 

82 0.027 6858 
83 -0.298 6917 
84 0.024 6958 
85 -0.050 7114 
86 -0.041 7323 
87 0.068 7458 
88 -0.001 7612 
89 -0.188 8063 
90 0.086 8114 
91 0.043 8319 
92 -0.177 8455 
93 0.086 8709 
94 0.062 8851 
95 -0.044 8943 
96 -0.111 9334 
97 0.224 9406 
98 -0.641 9836 
99 -0.000 9859 

100 -0.108 10178 
101 0.066 10266 
102 -0.144 10822 
103 -0.131 11336 
104 -0.022 11968 
105 0.053 12030 
106 -0.146 12647 
107 0.037 13313 
108 -0.011 13559 
109 0.047 13916 
110 -0.001 15094 
111 -0.191 15754 
112 -0.201 16491 
113 -0.111 16574 
114 0.084 16614 
115 -0.044 17569 
116 0.030 17629 
117 -0.390 17661 

Table 1: Deviance and 
original index 
associated to a peak 
index.
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Fig 27: Deviations associated with a more realistic spectra than Fig 26.. 

4 Implementation 

As explained in the introduction the platform of choice is the programming 
environment provided by MathWorks’ MATLAB. The implementation consist of a 
collection of MATLAB scripts, m-files, that make use of the tools available from 
the environment in combination with a few additional packages that contain 
effective implementations of well-known algorithms. In particular, packages are 
used for particular implementationa of PCA, ICA and wavelet smoothing. 

The over all functionality structure for the collection scripts can be 
summarized into the following categories: Data incorporation; reading and 
partitioning the binary data sets. Dimensionality reduction; from peak selection and 
protein expression identification. Region definition/analysis; finding symmetries, 
defining and improving regions. And the final comparison and visualization. 

4.1.1 PROPACK 

PROPACK is a software package with a set of functions for computing the singular 
value decomposition of large and sparse or structured matrices. The interesting 
routines to this project are the implementation for finding eigenvalues and vectors. 
Eigen values and eigenvectors of a hermitian matrix 

4.1.2 FastICA 

One widely used implementation of ICA is the FastICA algorithm. It is relatively 
fast, memory efficient and self-sufficient, meaning it has the possibility to take care 
of the necessary pre-processing of the data. FastICA uses a fixed-point 
optimization scheme based on Newton-iteration which has been tested to be several 
magnitudes faster than conventional gradient descent based methods. FastICA can 
search for the independent components one at a time or all at once. Its performance 
can also be tuned somewhat by choosing from a range of nonlinearities.. 
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4.1.3 Rice Wavelet Toolbox 

The rice wavelet toolbox (RWT) is a combined collection of MATLAB M files 
along with compiled C MEX files which is used for design and analysis of 1D and 
2D wavelet. It is open source software and distributed free or charge. The toolbox 
offers tools for de-noising and interfaces directly with MATLAB code. 

To interface with this toolbox a script developed at University of Texas that 
was developed as part of a research project dedicated to investigating MALDI-TOF 
spectra [6]. 

5 Discussion 

5.1 Performance 

As discussed in the previous section the region definition does not improve 
dramatically by performing the feature selection on the spectra, worth mentioning 
however is that the computational demand of the ICA will be greatly reduced, 
speeding up the process by a large factor. This would be increasingly beneficial 
when expanding the sample set by increasing resolution, spatial extension of the 
tissue sample or extension to include consecutive slices in an attempt to produce 
three dimensional regions. 

Another issue related to the remark about increasing the size sample set is 
that the cost of forming the covariance matrix to determine the principal 
components will increase by a power of two. This could lead to issues regarding 
memory efficiency and using SVD instead of direct eigenvector calculation would 
be beneficial. 

An improvement that might be seen by expanding the sample sets however 
may be that the peaks will have a larger number of statistical observations to rely 
on, which can lead to a more accurate feature selection. 

The largest limitation of this work is the inability of the region definition 
procedure to use subsets of the full sample set or match regions spatially. This will 
lead the algorithm to be very likely to collapse when expanded to include sample 
sets containing a larger number of regions. 

5.2 Possible improvements 

Coupling the spectrum based comparison of the two halves of the brain with an 
algorithm that uses more spatial information as well as some known data of regions 
could improve the performance a lot. Although for this to be possible, problems of 
noise, deformations, natural differences and loss of information due to the small 
resolution of the sample sets must be addressed in detail. Analyzing the sample 
procedure, the biological structure of the brain as well as using manually identified 
and labelled regions to assist in finding relevant parameters and their limits. Fitting 
known regions to the data might be helpful to extract the relevant differences.  
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The feature extraction procedure used to produce the regions may be 
improved by imposing known limitations of the transformation. The ability to 
retrieve strictly positive results would for example be beneficial in this case as 
negative densities are not physically plausible. This is not guaranteed in the case of 
PCA nor the implementation of ICA used for this report. 

5.3 Sources of error 

As in any analysis that rely on measured quantities the accuracy of the samples are 
of utmost importance, by following well supported guidelines and a good 
understanding of the nature of the measurements the errors can be minimized. The 
most important possible sources of error that are not implementation specific 
consist of: 

1. Calibration error of the measurement equipment, may produce drift or 
scaling problems in the data causing mismatched spectra and in the end 
deformed intensity maps. 

2. The possibility of deformation of the tissue when isolating the relevant 
regions. This would lead to deformations in the sample sets as well and 
make the region matching harder. 

3. Uneven sample preparation, different thickness of the slices or uneven 
distribution of matrix across the tissue. As a result there may be variations 
in scaling of the sample spectra, displayed as variations in the intensity 
maps. 

4. Spatial discretization of the sample may result in smaller features to be lost, 
such as line segments (and plane regions in 3D). 

5. The discretization of the mass spectra due to the time interval used as well 
as the energy transferred from the laser pulse, will make individual spectra 
harder to resolve. 

6. The signal must be strong compared to the noise level in order to avoid 
false positives, the stochastical nature of the variables requires a certain 
number of observations to be able to discriminate them from noise. May 
produce false positive identification of peaks. 

5.4 Extension to 3D 

The demands of extending the algorithm to work with sample sets connected in 
three dimensions would drastically increase the amount of processed data and thus 
increase the need for memory efficiency. 

The large amount of data may make it hard to keep the sampling device well 
calibrated through every set of samples and means for basic synchronization of 
peaks between slices would be advisable, both for scaling and drift.  

There would also be need for a spatial adjustment to correct for variations in 
deformations caused by the individual cuts. As well as slight differences in the 
orientation of the grid over the tissue sample. 



 23

The methods as they are should be easy to extend to 3 dimensions, but as 
long as spatial information is not used the number of regions one expect to find 
within the sample sets must remain low. 

6 Conclusion 

Mass spectrometry data obtained from a brain-half-symmetric tissue samples was 
analyzed to extract region definitions and corresponding protein distributions. This 
was implemented using different feature selection approaches such as subset 
selection and linear transformations. 

The regions were then examined for symmetry and compared across the 
centre axis of the brain, projecting a constraint of symmetry across the protein 
spectra over the regions. The level of symmetry of protein expression was 
measured by the relative deviation from the weighted average intensity. 

Results show that restrictive approaches to feature selection across the 
spectra perform equally well compared to the full spectra when used as a base for 
feature extraction based on PCA and ICA. ICA will produce superior results to 
PCA when it comes to the number of identifiable regions and general quality of the 
produced intensity maps. The region comparison approach attempted should 
however be complemented with spatial information based on the nature of the 
sample sets and sample preparations procedure. 
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