
2012-01-30

1

Models [5]

Prototypes [2.3.1]

Process repetition [2.3.2, 2.4]

Agile processes [3]

Software Engineering 47

Models

• Abstraction
– remove detail

– focus on viewpoint

• Dynamic
– interaction with

environment

– control flow

– data flow

• Static
– physical

– database schema

– object structure

Software Engineering 48UML activity diagram Software Engineering 49

Software Engineering 50 Software Engineering 51

Models

• Why?
– Improve understanding

– all viewpoints

– ”coathanger” - requirements refer to it

– validation

• Warnings
– try to avoid design

– avoid massive documentation

2012-01-30

2

Software Engineering 52

x

x x

becomes

about

model

requirements

Traceability

Software Engineering 53

Prototypes

• Used for
– requirements elicitation

– requirements validation

– proof of concept

– user training

– back to back testing

Risk reduction

Software Engineering 54

Warning

• A prototype is not the product!
It may differ in
– functionality

– performance

– reliability

– scalability

– maintainability

– user-interface, ”finish”
Software Engineering 55

Throw away
prototype

Exploratory
development

Goal

Start

Role

Quality

Risks

specification
validation, risk

uncertain parts

evaluate and
throw away

as low as useful

- not thrown away
- too low quality

prevents evaluation

working system

known parts

grow into the system

product

- bad structure
- low process visibility
- contractual problems

Repetition in processes

Iterative

Incremental

Evolutionary

Software Engineering 57

Iterative process

Requirements

System

version 1

version 1
paper prototype

Develop Evaluate

version 2

2012-01-30

3

Software Engineering 58

Iterative process

Requirements

System

version 2

version 2
throw away prototype

Develop Evaluate

version 3

Software Engineering 59

Iterative process

• Each iteration
– functionality can be added

– requirements can be changed

• Problem: when does it end?
– budget

– contract

Software Engineering 60

Incremental (divide and conquer)

Design, code, unit testRequirements

Requirements Design, code, unit test

Requirements Design, code, unit test

Requirements

Test
Test Test

Design, code, unit test

1.

2.

3.

4.

Note: choose process inside increment, e.g. V-model

Software Engineering 61

Design, code, unit testRequirements

Requirements Design, code, unit test

Requirements Design, code, unit test

Requirements

Test
Test Test

Design, code, unit test

1.

2.

3.

4.

Advantages of incremental development:
• The most important parts are most tested
• Later increments benefit from more domain knowledge
• Can even out work load for specialists (in UCSD)
• After each increment there is a working (incomplete) system

• could be delivered if money or time runs out
• could be used for user training

Software Engineering 62

Rational
Unified
Process
(RUP) Software Engineering 63

Top-down vs. Bottom-up

• Traditional ”from
scratch” development

• Hierarchical system

• ”The Cathedral”

• Reuse based
development

• ”network” system
component-based

• ”The Bazaar”

2012-01-30

4

Software Engineering 64

Traditional vs. Agile .

• Follow a plan

• Change costs

• Frozen requirements
contract

• Documentation

• Deliverables at a
deadline

• People

• Embrace change

• User stories, tests,
customer involvement

• Working software

• Time-boxed

• smaller increments

Agile
principle

Scrum Extreme Programming

Incremental
planning and
development

Sprints
Sprint backlog
Planning poker

Implement user stories
Story cards
Planning poker

Customer
involvement

Product owner
Demo at end of sprint

Customer representative in
development team

People,
not process

Scrum meetings
Sustainable pace (time‐boxed)

Pair programming
Collective ownership of code
Sustainable pace

Embrace
change

Change occurs from one sprint to the
next

Continuous integration and release
Test‐first development

Maintain
simplicity

Refactoring
No anticipation of future
requirements

Refactoring
No anticipation of future
requirements

