
2012-01-30

1

Design

Design process [2.2.2]

Architectures [6]

Reuse [16]

Component-based design [17] 

Software Engineering 67

The V-model

Requirements

Design

Implementation   Unit  tests

Operation, 
Maintenance

Integration tests

System tests

ReuseReuse

Software Engineering 69

Design methods

• ”Structured methods” 70’s/80’s
– Asking the right questions

– Models
• decomposition, architecture

• levels of abstraction (formality, detail)

• focus on an aspect

– Notations … UML

– Tools

Software Engineering 70

Architecture is based on
non-functional requirements 

[6.1   18.1]

• Performance - Scaleability

• Robustness

• Reliability - Availability

• Safety - Security

• Simplicity - Maintainability

• Reuse - Reusability

physical

logical

decomposition

Software Engineering 71

Architectural views

physical

logical

conceptual

processes
communication

development



2012-01-30

2

Software Engineering 72

Architectural patterns

• Understanding legacy systems

• Common understanding

• Reuse of designs

+ easy to share data
+ independent

applications

- fixed data representation
- security
- bottleneck: repository

Repository architecture [6.3.2]

+ easy to extend
+ security

(implement in server)

- bottleneck: network

Client-server architecture [6.3.3]

Software Engineering 76

Logical 3-tier   [18.3.3]

• Presentation

• Computation
(Business logic)

• Data

Software Engineering 77

Logical 3-tier   [18.3.3]

Example: stocks in the bank

• Presentation

• Computation
(Business logic)

• Data    (time series) How much you own
Value of stocks

Menus, graphs, etc.

Authentication
Computation
Verifying orders



2012-01-30

3

Software Engineering 78

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

Software Engineering 79

Physical implementation

• Presentation

• Computation

• Data

thin
client

+ simple client (browser, COTS)
+ security
- server load

fat
client

Software Engineering 80

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

+ simple client
+ security
- server load

- need to install client
- security (raw data)
+ server load

Software Engineering 81

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

• Games
• In-house systems

(CAD, CASE)

- need to install client
- security (raw data)
+ server load

Software Engineering 82

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

+ scaleable
+ best of two worlds
- double network delays
- complex

+ reuse:
+ share lower layers
+ replace layer

- performance
- need to 

bypass layers

Layered architecture [6.3.1]

request
lower level of
abstraction

provide
service



2012-01-30

4

Pipe and filter [6.3.4]

Process view

• CORBA - Common Object Request Broker Architecture

• EJB - Enterprise Java Beans
• Microsoft - COM, COM+, .NET

Distributed components [18.3.4]

Software Engineering 87

Reuse [16]

• System (COTS)

• Configurable system
– Product line (ERP)

• Large subsystem
– wrapped legacy system

– frameworks, services

• Libraries

• Components

Software Engineering 88

Level              Patterns

• System (COTS)

• Configurable system          Architecture
– Product line (ERP)

• Large subsystem              Model-based

– wrapped legacy system          engineering

– frameworks, services      Program generators

• Libraries                           Design patterns

• Components
Software Engineering 89

Reuse also

• Requirements

• User interface
– standardization improves usability

– documentation

• Test suites
– regression testing



2012-01-30

5

Software Engineering 90

Reuse - why? [Fig.16.1]

• Less work
– shorter time to market

– effective use of specialists

– cheaper

• You know it
– less process risk

– dependability [warning: Ariane 5 Fig.17.9]

• Standards compliance
Software Engineering 91

Reuse - problems [Fig.16.2]

• Need to invest in reusable items

• Finding reusable items
– searching, understanding, adapting

• Lack of control
– dependence on supplier, support

– maintenance

– ”not invented here”

– tool support for integration

Software Engineering 92

Reuse - process [17.2]

Requirements outline
Find candidate 

items
Modified Requirements
+ Architecture

Select items

Compose System
Adapt items

Component-Based
Software Engineering

(CBSE) essentials

 Independent components specified by their interfaces.

 Component standards to facilitate component 
integration.

Middleware that provides support for component inter-
operability.

 A development process that is geared to reuse.

93Chapter 17 Software reuse - Slide by Sommerville

CBSE problems
 Component trustworthiness - how can a component with 

no available source code be trusted?

 Component certification - who will certify the quality of 
components?

 Emergent property prediction - how can the emergent 
properties of component compositions be predicted?

 Requirements trade-offs - how do we do trade-off 
analysis between the features of one component and 
another?

94Chapter 17 Software reuse - Slide by Sommerville

Component development for reuse

 Specially constructed by generalising existing 
components.

 Component reusability

 stable domain abstractions
 hide state representation
 as independent as possible
 publish exceptions through the component interface

 Trade-off between reusability and usability

 More general interface
= greater reusability
= more complex = less usable.

95Chapter 17 Software reuse - Slide by Sommerville



2012-01-30

6

Changes for reusability
 Remove application-specific methods.

 Change names to make them general.

 Add methods to broaden coverage.

Make exception handling consistent.

 Add a configuration interface for component adaptation.

 Integrate required components to reduce dependencies.

96Chapter 17 Software reuse - Slide by Sommerville


