
2012-01-30

1

Design

Design process [2.2.2]

Architectures [6]

Reuse [16]

Component-based design [17]

Software Engineering 67

The V-model

Requirements

Design

Implementation Unit tests

Operation,
Maintenance

Integration tests

System tests

ReuseReuse

Software Engineering 69

Design methods

• ”Structured methods” 70’s/80’s
– Asking the right questions

– Models
• decomposition, architecture

• levels of abstraction (formality, detail)

• focus on an aspect

– Notations … UML

– Tools

Software Engineering 70

Architecture is based on
non-functional requirements

[6.1 18.1]

• Performance - Scaleability

• Robustness

• Reliability - Availability

• Safety - Security

• Simplicity - Maintainability

• Reuse - Reusability

physical

logical

decomposition

Software Engineering 71

Architectural views

physical

logical

conceptual

processes
communication

development

2012-01-30

2

Software Engineering 72

Architectural patterns

• Understanding legacy systems

• Common understanding

• Reuse of designs

+ easy to share data
+ independent

applications

- fixed data representation
- security
- bottleneck: repository

Repository architecture [6.3.2]

+ easy to extend
+ security

(implement in server)

- bottleneck: network

Client-server architecture [6.3.3]

Software Engineering 76

Logical 3-tier [18.3.3]

• Presentation

• Computation
(Business logic)

• Data

Software Engineering 77

Logical 3-tier [18.3.3]

Example: stocks in the bank

• Presentation

• Computation
(Business logic)

• Data (time series) How much you own
Value of stocks

Menus, graphs, etc.

Authentication
Computation
Verifying orders

2012-01-30

3

Software Engineering 78

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

Software Engineering 79

Physical implementation

• Presentation

• Computation

• Data

thin
client

+ simple client (browser, COTS)
+ security
- server load

fat
client

Software Engineering 80

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

+ simple client
+ security
- server load

- need to install client
- security (raw data)
+ server load

Software Engineering 81

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

• Games
• In-house systems

(CAD, CASE)

- need to install client
- security (raw data)
+ server load

Software Engineering 82

Physical implementation

• Presentation

• Computation

• Data

thin
client fat

client

+ scaleable
+ best of two worlds
- double network delays
- complex

+ reuse:
+ share lower layers
+ replace layer

- performance
- need to

bypass layers

Layered architecture [6.3.1]

request
lower level of
abstraction

provide
service

2012-01-30

4

Pipe and filter [6.3.4]

Process view

• CORBA - Common Object Request Broker Architecture

• EJB - Enterprise Java Beans
• Microsoft - COM, COM+, .NET

Distributed components [18.3.4]

Software Engineering 87

Reuse [16]

• System (COTS)

• Configurable system
– Product line (ERP)

• Large subsystem
– wrapped legacy system

– frameworks, services

• Libraries

• Components

Software Engineering 88

Level Patterns

• System (COTS)

• Configurable system Architecture
– Product line (ERP)

• Large subsystem Model-based

– wrapped legacy system engineering

– frameworks, services Program generators

• Libraries Design patterns

• Components
Software Engineering 89

Reuse also

• Requirements

• User interface
– standardization improves usability

– documentation

• Test suites
– regression testing

2012-01-30

5

Software Engineering 90

Reuse - why? [Fig.16.1]

• Less work
– shorter time to market

– effective use of specialists

– cheaper

• You know it
– less process risk

– dependability [warning: Ariane 5 Fig.17.9]

• Standards compliance
Software Engineering 91

Reuse - problems [Fig.16.2]

• Need to invest in reusable items

• Finding reusable items
– searching, understanding, adapting

• Lack of control
– dependence on supplier, support

– maintenance

– ”not invented here”

– tool support for integration

Software Engineering 92

Reuse - process [17.2]

Requirements outline
Find candidate

items
Modified Requirements
+ Architecture

Select items

Compose System
Adapt items

Component-Based
Software Engineering

(CBSE) essentials

 Independent components specified by their interfaces.

 Component standards to facilitate component
integration.

Middleware that provides support for component inter-
operability.

 A development process that is geared to reuse.

93Chapter 17 Software reuse - Slide by Sommerville

CBSE problems
 Component trustworthiness - how can a component with

no available source code be trusted?

 Component certification - who will certify the quality of
components?

 Emergent property prediction - how can the emergent
properties of component compositions be predicted?

 Requirements trade-offs - how do we do trade-off
analysis between the features of one component and
another?

94Chapter 17 Software reuse - Slide by Sommerville

Component development for reuse

 Specially constructed by generalising existing
components.

 Component reusability

 stable domain abstractions
 hide state representation
 as independent as possible
 publish exceptions through the component interface

 Trade-off between reusability and usability

 More general interface
= greater reusability
= more complex = less usable.

95Chapter 17 Software reuse - Slide by Sommerville

2012-01-30

6

Changes for reusability
 Remove application-specific methods.

 Change names to make them general.

 Add methods to broaden coverage.

Make exception handling consistent.

 Add a configuration interface for component adaptation.

 Integrate required components to reduce dependencies.

96Chapter 17 Software reuse - Slide by Sommerville

