2012-01-30

Design

Design process [2.2.2]
Architectures [6]
Reuse [16]
Component-based design [17]

The V-model

Requirements System tests === Qperation,

Maintenance

Reuse Reuse

\ Design /

Integration tests

Implementation Unit tests

Software Engineering 67

Figure 2.5 A general model of the design process

Design inputs
Platform Requirements Data
information specification description
Y Design activities
Auchitectural - Interface - Component
_ design FT\ design T design
4 »
Database design
Y Design outputs
System Database Interface Component
architecture specification specification specification

Design methods

* "Structured methods” 70’s/80’s

— Asking the right questions

— Models
» decomposition, architecture
« levels of abstraction (formality, detail)
« focus on an aspect

— Notations ... UML

—Tools

Software Engineering 69

Architecture is based on
non-functional requirements
[6.1 18.1]

Performance - Scaleability

Robustness @
Reliability - Availability —
Safety - Security ‘ decomB03|t|on ‘

Simplicity - Maintainability @ical
Reuse - Reusability

Software Engineering 70

Architectural views

physical

- o
development logical

Software Engineering 71

processes
communicatio

2012-01-30

Architectural patterns
» Understanding legacy systems
« Common understanding

» Reuse of designs

Software Engineering 72

Repository architecture [6.3.2]

UML Code
editors generators

¥ Java
Y editor
Design Project I
i |
translator repository N
X “~al Python
Y editor
Design Report
analyzer generator

+ easy to share data - fixed data representation
+ independent - security
applications - bottleneck: repository

Figure 6.20 A repository architecture for a language processing
system

;/- Lexical 7 Syntax (//SEmanliC
_ analyzer _ analyzer analyzer
[}

D

/-7Prellv;- [Abstract Grammar | /(; i h
printer syntax tree definition <—>{ Optimizer
4 i [symbol] e ~
(i ymbo Qutput /" Code
@H table definition [_generator
Repository

Client-server architecture [6.3.3]

(a1) (ciem2) (ciems) (clenta)
\ . . \ 4\ y
I X X T
Y Y Y Y

Internet ‘
A A A A
A A Al v
/" Catalog /7 Video Y\ /7 Picwre Y\ /7 web |\
sever | server server server
libary | | Film and
Film store Photo store 2
~\V(alalcgu97/ X ! AN 7“/ _photo :n'q:/’

+ easy to extend - bottleneck: network
+ security

(implement in server)

Logical 3-tier [18.3.3]

* Presentation

» Computation
(Business logic)

e Data

Software Engineering 76

Logical 3-tier [18.3.3]

Example: stocks in the bank
» Presentation Menus, graphs, etc.

Authentication
Computation
Verifying orders

» Computation
(Business logic)

« Data (time series) How much you own
Value of stocks

Software Engineering 77

2012-01-30

Physical implementation Physical implementation
. , @ . - @
* Presentation thin at e « Presentation thin ot 2
. client a ® . client a ©
« Computation client 3 « Computation client 3
(2 (2]
e Data 2 e Data 2
o o
+ simple client (browser, COTS)
+ security
- server load
Software Engineering 78 Software Engineering 79
Physical implementation Physical implementation
. , o) . . o)
* Presentation thin fat = * Presentation thin at =
client a ® client a ®
« Computation client 3 « Computation client 3
(2] (2]
e Data -S: e Data -S:
+ simple client - need to install client . Games - need to install client
+ security - security (raw data) « In-house systems - security (raw data)
-serverload + server load (CAD, CASE) + server load
Software Engineering 80 Software Engineering 81
Physical implementation Layered architecture [6.3.1]
. _ 5 . request
* Presentation thin Y Authenticaton and auoriaton lower level of
client fat © . abstraction
. Computatlon Cllent 8 Core bus"‘ﬂszi::/,:pﬂ:ﬁ:::“ functionality 5
'@ provide
> System support (05, database etc. .
« Data = ‘ ’ service
+ scaleable _ ;
+ best of two worlds * reushe. I I - per grmance
- double network delays + share lowerlayers - need to
- complex + replace layer bypass layers
Software Engineering 82

2012-01-30

Pipe and filter [6.3.4]

[symbol table |
>
Syntax tree

Controller View View

. selection
Maps user actions L > Renders model
to model updates Requests model updates

A Selects view =< Sends user events to
User events | - toller
rd Y Y .
(" Lexical Yy (" syntactic)y /" Semantic Y\ " Code)
_ analysis _ analysis _ analysis __generation Change
notification
Process view e | state query
Model
™\ n:::‘;ls _)‘ > Receips Encapsulates application
Read issued) 7 1dentify >| state
_ imvoices I\ payments } Notifies view of state
I i /" Find 7 tssue h
I B h:“{!'.lg'"f) h-\\.‘l%’n'.':i.i‘,_)* =| Remindes Lchanges
Invoices Payments
Distributed components [18.3.4]
= == E | Reuse [16]
1 L
[—
[Gaabme2 ‘ e | » System (COTS)
[rez] | = Configurable system
Duabase 3| ‘ — Product line (ERP)
Display
‘ ! « Large subsystem

o |

CORBA - common Object Request Broker Architecture
EJB - Enterprise Java Beans
Microsoft - COM, COM+, .NET

—wrapped legacy system
— frameworks, services

* Libraries

« Components

Software Engineering 87

Level Patterns

» System (COTS)

» Configurable system
— Product line (ERP)

« Large subsystem
—wrapped legacy system
— frameworks, services

* Libraries

« Components

Architecture

Model-based
engineering
Program generators
Design patterns

Software Engineering 88

Reuse also

* Requirements

» User interface
— standardization improves usability
— documentation

» Test suites
— regression testing

Software Engineering 89

2012-01-30

Reuse - why? [Fig.16.1]

» Less work

— shorter time to market

— effective use of specialists

— cheaper
* You know it

— less process risk

— dependability [warning: Ariane 5 Fig.17.9]
» Standards compliance

Software Engineering 90

Reuse - problems [Fig.16.2]

* Need to invest in reusable items
 Finding reusable items

— searching, understanding, adapting
* Lack of control

— dependence on supplier, support

— maintenance

—"not invented here”

— tool support for integration

Software Engineering 91

Reuse - process [17.2]

Requirements outline

1 =~ Find candidate

items
Modified Requirements

+ Architecture ~~
/ Select items
Adapt items

Software Engineering 92

Compose System

Component-Based
Software Engineering
(CBSE) essentials

< Independent components specified by their interfaces.

<~ Component standards to facilitate component
integration.

< Middleware that provides support for component inter-
operability.

< A development process that is geared to reuse. H

Chapter 17 Software reuse - Slide by Sommerville 93

CBSE problems

<> Component trustworthiness - how can a component with
no available source code be trusted?

<- Component certification - who will certify the quality of
components?

< Emergent property prediction - how can the emergent
properties of component compositions be predicted?

<> Requirements trade-offs - how do we do trade-off
analysis between the features of one component and

another? I i l I

Chapter 17 Software reuse - Slide by Sommerville 94

Component development for reuse

< Specially constructed by generalising existing
components.

<~ Component reusability

= stable domain abstractions

= hide state representation

= asindependent as possible

= publish exceptions through the component interface
< Trade-off between reusability and usability

= More general interface

= greater reusability
= more complex = less usable.

Chapter 17 Software reuse - Slide by Sommerville 95

Changes for reusability

< Remove application-specific methods.

< Change names to make them general.

< Add methods to broaden coverage.

< Make exception handling consistent.

< Add a configuration interface for component adaptation.
<~ Integrate required components to reduce dependencies.

Chapter 17 Software reuse - Slide by Sommerville 96

2012-01-30

