
2012-02-01

1

Validation and Verification

Inspections [24.3]

Testing overview [8, 15.2]
- system testing

Software Engineering V&V 1 Software Engineering V&V 2

The V-model

Requirements

Design

Implementation Unit tests

Operation,
Maintenance

Integration tests

System tests

V & V
Plans

Software Engineering 3

Validation

• Will the product satisfy the customer needs?

• Are we building the right product?

Verification

• Do we satisfy the requirements?

• Are we building the product right?

How much V&V is enough?

• Good enough

• Safe enough

• Competition

• Testing itself does not improve quality

• Costly (maybe impossible!)
to increase quality after development

Software Engineering V&V 4

Testing vs. Debugging

The debugging process
Fixing 1 error could create > 1 new error

Software Engineering V&V 5

Testing vs. Inspections

Testing – dynamic: running a program
Inspections – static: reviewing a document

2012-02-01

2

Planning

• Determine goals

• Proportion static/dynamic V&V

• Ensure verifiability (req’s, design, code)

• Design tests

• Evaluation criteria - what is good enough?

• Tool support

• Time plan

• Documentation
Software Engineering V&V 7

Inspections [24.3]

+ Apply to all documents:
no program needed

+ Quality perspective from the start

- Do not cover emergent properties:

mostly applies to verification

- Added cost early in the process =
+ Investment in quality

Software Engineering V&V 8

Inspection goals

• Finding errors

• Checking adherence to standards

• Readability (code, documentation)

• Collecting data
– Common errors

Software Engineering V&V 9

Inspection pitfalls

• Questioning overall design
– ”This is OK, but I can do better”

• Designing repair during inspection
– ” This is not OK, and I can do better”

• Evaluating people

• Inspection preconditions are not fullfilled

Software Engineering V&V 10

Inspection preconditions

• Precise specification: criteria OK/not OK

• Standards known to team members

• A finished item for inspection

• For code inspections [24.3.2]:
– Syntactically correct code

– Checklist of common errors

Software Engineering V&V 11 Software Engineering 12

2012-02-01

3

Automated Static Analysis [15.1.3]

#include <stdio.h>

printarray(Anarray)

int Anarray;

{

printf(”%d”,Anarray);

}

main()

{

int Anarray[5]; int i; char c;

printarray(Anarray, i, c);

printarray(Anarray);

}

(10) c may be used before set

(10) i may be used before set

printarray: variable # of
args. (4) :: (10)

printarray: arg.1 used
inconsistently (4) :: (10)

printf returns value which is
always ignored.

Software Engineering 13

awful, correct C LINT warnings

Inspection process

Finding
suspected deviations

Orientation Walk through (2 hours)

Limited size of document
Software Engineering V&V 14

Inspection meeting roles

• Chair (organize)

• Scribe (taking notes)

• Author (fixing ... after meeting)
– Reader (walk through)

• Inspector(s) (find deviations)
– viewpoints

Inspections require training!
Software Engineering V&V 15

What is a test?

• A test suite is a set of test cases run
together for a single purpose.

• A test case consists of
– Test data

– Expected outcome (correct answer)

– Expected behaviour (e.g. response time)

Software Engineering V&V 16

The oracle problem

What is the correct answer?
1. ... at least the program didn't crash ...
2. Compute by hand and compare
3. Back-to-back testing
4. The answer is ”reasonable”

• Is the list sorted?

• Is the yellow ball yellow and round?

• Is the area of the triangle between … and …

Software Engineering V&V 17

Classification of testing

• Classification by goal:
- finding defects
- acceptance / validation
- measurement: reliability,performance, ...

• Classification by level
- system
- subsystem
- module Software Engineering V&V 18

2012-02-01

4

Acceptance test (system)

• Factory acceptance test (FAT)

Installation

• Site acceptance test (SAT)

Goals:
– is the contract fulfilled? (verification)

– is the product usable? (validation)

Software Engineering V&V 19

Reliability testing

• Requires test data reflecting
”normal” operation

• Statistical test [15.2]
– ”random” test

Software Engineering V&V 20

• Establish the operational profile.
– from an existing system
– assumptions about use of new system

• Construct test data reflecting the
operational profile (statistically).

• Test: observe the number of failures and
the times of these failures.

• Compute the reliability after a statistically
significant number of failures.

Software Engineering V&V 21

Problems

• Operational profile uncertainty
– operational profile = real use of the system?

• High costs of test data generation
– if test data not generated automatically.

• Statistical uncertainty
– highly reliable systems will rarely fail.

• Recognizing failure
– conflicting interpretations of a specification.

Software Engineering V&V 22

Performance

• Stress test
How the system handles increasing / extreme
load

– graceful degrading / total collaps

– may reveal defects

• Profiling
10% of the code takes 90% of the time

Software Engineering V&V 23

Integration / Interface testing

• Top-down vs. Bottom-up

• Needs scaffolding
stubs for unfinished parts.

• Test for
– Miscommunication (arguments, ...)

– Timing (mutex, deadlock)

– Environmental assumptions
(available services, memory, etc.)

Software Engineering V&V 24

2012-02-01

5

Reusability

• Back-to-back testing
– use a previous version of the system

(prototype) as the test oracle

• Regression test
– applies for all kinds of test

– rerun a test suite for every change in the
system

– goal: did the change break anything?

Software Engineering 25

Test tools

• Automated testing
– Record, Replay

• Test environment, scaffolding

• Large test suites (stress, statistical test)

• Evaluation
– Profiling

– Coverage

• Documentation, traceability
Software Engineering V&V 26

Defect testing
Goals:

– detect as many defects as possible

– detect the most damaging defects

– detect the most likely defects - statistical test!

Black-box testing: the source code is not
considered (maybe even not known).

Glass-box testing: the tests are chosen
based on the source code.

Software Engineering V&V 27

