2012-02-01

Validation and Verification The V-model
REQUIrEMEN!S s System tests === Operation,
i Maint
InSpeCtlons [243] V&V aintenance
Plans

) _ DESIJN s |ntegration tests
Testing overview [8, 15.2]

- system testing

Implementation Unit tests

Validation How much V&V is enough?
« Will the product satisfy the customer needs? « Good enough
« Are we building the right product? « Safe enough

- \ﬁ » Competition

Verification
» Do we satisfy the requirements? * Testing itself does not improve quality
« Are we building the product right? Costly (maybe impossible!)

—_ to increase quality after development
Testing vs. Debugging Testing vs. Inspections

Inspections |

Test = " Test P
Specification e ’ -~)
results cases -

- > Y N Ry
Software UML design Database

Requirements
specification

Program

architecture models schemas

Y

L) Y
e - _— T l
Locate Design Repair Retest
> > » | Y
error error repair error program :

Syste o Testing . ‘:
prototype - y

Fixing 1 error could create > 1 new error Testing — dynamic: running a program
Software Engineering V&V s Inspections — static: reviewing a document

2012-02-01

Planning

Determine goals

Proportion static/dynamic V&V

Ensure verifiability (req’s, design, code)
Design tests

Evaluation criteria - what is good enough?
Tool support

Time plan

Documentation

Software Engineering V&V 7

Inspections [24.3]

+ Apply to all documents:
no program needed

+ Quality perspective from the start
- Do not cover emergent properties:
mostly applies to verification

- Added cost early in the process =
+ Investment in quality

Software Engineering V&V 8

Inspection goals

Finding errors
Checking adherence to standards
Readability (code, documentation)

Collecting data
— Common errors

Software Engineering V&V 9

Inspection pitfalls

* Questioning overall design

—"This is OK, but | can do better”
 Designing repair during inspection
—" This is not OK, and | can do better”
Evaluating people
* Inspection preconditions are not fullfilled

Software Engineering V&V 10

Inspection preconditions

Precise specification: criteria OK/not OK
Standards known to team members
A finished item for inspection

For code inspections [24.3.2]:
— Syntactically correct code
— Checklist of common errors

Software Engineering V&V 1

Data faults

Control faults

Inputioutput faults

Interface faults

Storage management faults

Exception management faults

Figure 24.8 An inspection checklist

Are all program variables initialized before their values are used?

Have all constants been named?

Should the upper bound of arrays be equal to the size of the array or Size -17
If character strings are used, is a delimiter explicitly assigned?

Is there any possibility of buffer overflow?

For each conditional statement, Is the condition correct?
Is each loop certain to terminate?

Are correctly

In case statements, are all possible cases accounted for?

If a break is required after each case in case statements, has it been
included?

Are all input variables used?
Are all output variables assigned a value before they are output?
Can unexpected inpuls cause corruption?

Do all function and method calls have the correct number of parameters?

Do formal and actual parameter types match?

Are the paramelers in the right order?

If components access shared memory, do they have the same model of the
shared memory structure?

It a linked structure is modified, have all links been correctly reassigned?
If dynamic storage is used, has space been allocated correctly?
Is space explicitly deallocated after it is no longer required?

Have all possible error conditions been taken into account?

2012-02-01

Automated Static Analysis [15.1.3]

awful, correct C LINT warnings

#include <stdio.h>
printarray(Anarray)
int Anarray;

(10) c may be used before set

(10) i may be used before set
{

printf(’%d”,Anarray) ; printarray: variable # of

T args. (4) :: (10)

mainQ
{ printarray: arg.1l used
int Anarray[5]: int i char c: inconsistently (4) :: (10)
printarray(Anarray, i, c);
printarray(Anarray);

}

printf returns value which is
always ignored.

Software Engineering

Inspection process

o [Emor Y
C lanning /.\ P ~) . \gorrection /™|
o ndniduad N e (Follow-up™
_preparation "\ meeting / - ~ "\ checks)
e Group _‘ »{ Improvement | N~
{_preparation) ~ -
- Pre-review activities - - Post-review activities -

1 1

Orientation Walk through (2 hours)
Finding

ted deviati Limited size of document
SUSpeC e EVIagéa\QaSre Engineering V&V 14

Inspection meeting roles

Chair (organize)

Scribe (taking notes)

Author (fixing ... after meeting)
— Reader (walk through)

Inspector(s) (find deviations)
— viewpoints

Inspections require training!

Software Engineering V&V 15

What is a test?

» A test suite is a set of test cases run
together for a single purpose.

A test case consists of
— Test data
— Expected outcome (correct answer)
— Expected behaviour (e.g. response time)

Software Engineering V&V 16

The oracle problem

What is the correct answer?
1. ... at least the program didn't crash ...
2. Compute by hand and compare
3. Back-to-back testing
4. The answer is "reasonable”
« |s the list sorted?
« Is the yellow ball yellow and round?
« Is the area of the triangle between ... and ...

Software Engineering V&V 17

Classification of testing

« Classification by goal:
- finding defects
- acceptance / validation
- measurement: reliability,performance, ...

« Classification by level
- system
- subsystem
- module

Software Engineering V&V 18

2012-02-01

Acceptance test (system)

 Factory acceptance test (FAT)
Installation
* Site acceptance test (SAT)

Goals:
—is the contract fulfilled? (verification)
—is the product usable? (validation)

Software Engineering V&V 19

Reliability testing

* Requires test data reflecting
"normal” operation

* Statistical test [15.2]
—"random” test

Software Engineering V&V 20

Establish the operational profile.
— from an existing system
—assumptions about use of new system

Construct test data reflecting the
operational profile (statistically).

» Test: observe the number of failures and
the times of these failures.

» Compute the reliability after a statistically
significant number of failures.

Software Engineering V&V 21

Problems

Operational profile uncertainty
— operational profile = real use of the system?
* High costs of test data generation
— if test data not generated automatically.
« Statistical uncertainty
— highly reliable systems will rarely fail.
» Recognizing failure
— conflicting interpretations of a specification.

Software Engineering V&V 22

Performance

e Stress test
How the system handles increasing / extreme
load

— graceful degrading / total collaps
—may reveal defects

« Profiling
10% of the code takes 90% of the time

Software Engineering V&V 23

Integration / Interface testing

» Top-down vs. Bottom-up

Needs scaffolding

stubs for unfinished parts.

» Test for

— Miscommunication (arguments, ...)
— Timing (mutex, deadlock)

— Environmental assumptions
(available services, memory, etc.)

Software Engineering V&V 24

2012-02-01

Reusability

» Back-to-back testing

— use a previous version of the system
(prototype) as the test oracle

Regression test
— applies for all kinds of test

—rerun a test suite for every change in the
system

— goal: did the change break anything?

Software Engineering 25

Test tools

Automated testing

— Record, Replay

Test environment, scaffolding

Large test suites (stress, statistical test)
Evaluation

— Profiling

— Coverage
Documentation, traceability

Software Engineering V&V 26

Defect testing
Goals:
— detect as many defects as possible
— detect the most damaging defects
— detect the most likely defects - statistical test!

Black-box testing: the source code is not
considered (maybe even not known).

Glass-box testing: the tests are chosen
based on the source code.

Software Engineering V&V 27

