
2012-02-08

1

Defect testing
Goals:

– detect as many defects as possible

– detect the most damaging defects

– detect the most likely defects - statistical test!

Black-box testing: the source code is not
considered (maybe even not known).

Glass-box testing: the tests are chosen
based on the source code.

Software Engineering V&V 27

What is a test?

• A test suite is a set of test cases run
together for a single purpose.

• A test case consists of
– Test data

• Including invalid inputs

– Expected outcome (correct answer)

– Expected behaviour (e.g. response time)
Software Engineering V&V 28

Black-box testing [8.1.2]

No code – but requirements!

Partition testing:

• Partitions: input and output equivalences.
– typical values

– boundary values

– invalid inputs

Software Engineering V&V 29

Example: sorting a list
• lenght of list

– empty list: boundary value
– list with one element: boundary value
– list with some "typical" number of elements
– list with extremely many elements: boundary value

• comparisons
– no duplicates (typical?)
– some duplicates (typical)
– all elements are the same (boundary value)

• invalid inputs
– not a list
– a list with elements that cannot be compared

Software Engineering V&V 30

Glass-box testing

”All code" should be tested at least
once
– testing once is rather weak

– what does "all code" mean?

Definition: coverage is the percentage of
"all code" that is tested by a test suite.

Software Engineering V&V 31

Coverage

• Statement coverage
– every statement must be tested

• Branch coverage
– every choice (if, while) must be tested

for both true and false.

Software Engineering V&V 32

2012-02-08

2

Example (coverage)

Specification
inputs: result, taxrate, threshold
output: tax
relation: tax is <taxrate> % of the profit,

but the first <threshold> SEK is not taxed.

Software Engineering V&V 33

glossary: profit - a positive result.

result > 0

tax = 0

Y (there is a profit)

tax = taxrate/100 *
(result-threshold)

N

tax = 0 ;
if result > 0 then

% there is a profit
tax = taxrate/100 *

(result-threshold) ;
end if ;

Software Engineering V&V 34

result > 0

tax = 0

Y (there is a profit)

tax = taxrate/100 *
(result-threshold)

N

if result > 0 then
% there is a profit
tax = taxrate/100 *

(result-threshold)
else tax = 0
end if ;

Software Engineering V&V 35

Coverage testing flaws

Coverage testing tests code that exists, but

• not under all conditions,

• not code that should exist, but doesn't.

result

tax

Software Engineering V&V 36

How to do coverage testing?

• Decide on test data
– based on … (statistical, partitioning)

• Use a testing tool that records
– which code is executed during the test,

– computes coverage.

• Problem:
– you reach 80%, 90% or 95% coverage,

– obscure code is only reached for very specific input

– dead code is not executed for any input.
Software Engineering V&V 37

How to do coverage testing?
(theoretically)

• Decide on paths that cover the code

• For each path:
– compute an input that will produce this path,

– run a test with this input.

• Problems:
– how to compute inputs for a given path,

– there may be no such input (infeasible path)

Software Engineering V&V 38

2012-02-08

3

result > 0

tax = 0

Y

tax = taxrate/100 *
(result-threshold)

N

tax = 0 ;
if result > 0 then

tax = taxrate/100 *
(result-threshold) ;

end if ;
if tax < 0 then % oops
tax = 0
end if ;

39

tax < 0
Y

tax = 0N

infeasible path

Software Engineering V&V

result > 0

tax = 0

Y

tax = taxrate/100 *
(result-threshold)

N

40

tax < 0
Y

tax = 0N

Software Engineering V&V

What input for this path?

backwards reasoning

tax < 0

taxrate/100 *
(result-threshold) < 0

result > 0

tax = 0

Y

tax = taxrate/100 *
(result-threshold)

N

41

tax < 0
Y

tax = 0N

Software Engineering V&V

backwards reasoning

tax < 0

taxrate/100 *
(result-threshold) < 0

result < threshold

assume taxrate > 0

0 < result < threshold

Further coverage criteria

• Condition coverage

• requires tests
– i ≤ A.length and not found

– i > A.length

– found is true
Software Engineering V&V 42

% find item in array A
i = 1;
found = false;
while i ≤ A.length and not found do

if A[i] = item then …

obvious in
partition test!

• Relational operator coverage
for each comparison a < b,
test boundary cases

– a = b

– a = b-1

• Path coverage
– every feasible path is covered

– for programs without loops

– 100% path coverage

does not guarantee correctness!
Software Engineering V&V 43

• Data flow coverage
for each variable,
connect set – use pairs

Software Engineering V&V 44

result > 0

tax = 0

Y

tax = taxrate/100 *
(result-threshold)

N

tax < 0
Y

tax = 0N

use

set

set

2012-02-08

4

• Loop coverage
execute each loop

– 0 times (if possible)

– 1 time

– several times

• Error message coverage
– force the system to produce evey error

message

Software Engineering V&V 45

Interface coverage tests

• Function coverage
– every function is called at least once (weak)

• Call coverage
– every function call is executed at least once

Software Engineering 46

Testing concurrent systems

• Problems:
– What is a path? Sequence of executed

statements from more than one source code.

– A combinatorial explosion

– Programmers make errors because of
unforeseen sequences.

– Hard to control which sequence is tested
• errors may be hard to reproduce.

• difference between "laboratory" and "reality".
Software Engineering V&V 47 Software Engineering 48

Summary

• Black box
– Based on specification

– ”Natural”

• Glass box
– Coverage ... Different criteria

– 100% coverage ≠ 100% correct

• Concurrent systems
– Testing may find some faults

Software Engineering 49

