2012-02-21

Figure 9.8 Maintenance effort distribution

After Deployment

Evolution - Maintenance 9.1-9.3

Functionality
addition or

Environmental

Configuration management 25 g modicaton
Legacy systems 9.4
Re-engineering 9.3.2

Software Engineering 33

Maintenance / evolution / configuration

_ management
Change request

Fig 9.4 adapted
Configuration(s) —reject

Change 4 Analyze (/ Modify) / Deliver modified -
requests &soun:e code _ source code \ system Requirements |

specification

Emergency code repair Fig 9.6

« Leave change request open
+ Follow normal change request routine Design ||
documents

Code and
documentation

Software Engineering 34
Change Request Form
Project: SICSA/AppProcessing Number: 23/02 H
Change requester: I. Sommervilie Date: 20/01/09 Impact analysis

Requested change: The status of applicants (rejected, accepted, etc.)
should be shown visually in the displayed list of applicants.
» Change Control Board

ggf;??oganaly“ﬂ R Looek Anatysis date: — benefits of the change
Components affected: ApplicantListDisplay, StatusUpdater — number of users affected
Associated components: StudentDatabase —what if no change?

) . : — cost
Change assessment: Relatively simple to implement by changing the
display color according to status. A table must be added to relate status to o If change:
colors. No changes to associated components are required. priority

—fit in release cycle

Software Engineering 36 Software Engineering 37

2012-02-21

Change Request Form

Project: SICSA/AppProcessing Number: 23/02 . . .
Change requester: |. Sommerville Date: 20/01/09 CO nf| g u rat' on |te ms
Requested change: The status of applicants (rejected, accepted, etc.)
should be shown visually in the displayed list of applicants
g;;r;%;analyzcr: R. Looek Analysis date: ° requ”-ements

5 lay. .
Components affected: ApplicantListDisplay, StatusUpdater . d esi g n d ocumen tS
A iated p StudentD:

 code - modules

Change y simple to ir by the
display color according to status. A table must be added to relate status to H
colors. No changes lo associaled components are required. * test suites
Change priority: Medium * documentation

Change implementation:

Estimated effort: 2 hours

Date to SGA app. team: 28/01/09 CCB decision date: 30/01/09
Decision: Accept change. Change to be implemented in Release 1.2
Change implementor: Date of change:

Date toQA: QA

Date submitted to CM: Software Engineering 39
Comments:

installation files/routines

Terminology Tool support

* Version » Database
—of an item « Editing: check out ... check in
— unique identifier « System build

* Baseline « Regression test
— collection that cannot be changed (fall-back)

» Change reports, documentation
* Release

— delivered to customer

Software Engineering 40 Software Engineering 41

Figure 25.12 Continuous integration

Version .
Private
management -
workspace
system -
T Tests fail] _
Y | —"—I [——|
- ificati Implemention
Check-out > Build and Make > Build and ,Q Tests fail Specification I p! i
mainline test system changes test system
etc / Start ‘ ‘
J 3 [|

Figure 9.1 A spiral model of development and evolution

Tests OK ‘ \ \ Release 1
Chedk-in to Build and | Operation |
build server test system /
- Release 2
Version ~——
Build server management Release 3
system —
Software Engineering 42

2012-02-21

Evolution Dynamics (Lehman)

Law Description

1. Continuing change A program that is used in a real-world environment
necessarily must change or become progressively less
useful in that environment.

7. Declining quality

The quality of systems will appear to be declining unless
they are adapted to changes in their operational

environment.

6. Continuing growth ~ The functionality offered by systems has to continually
increase to maintain user satisfaction.

As an evolving program changes, its structure tends to
become more complex. Extra resources must be
devoted to preserving and simplifying the structure.

Constant pace of change

Law Description

8. Feedback system Evolution processes incorporate multi-agent,
multi-loop feedback systems and
you have to treat them as feedback systems
to achieve significant product improvement.

3. Large program Program evolution is a self-regulating process. System

evolution attributes such as size, time between releases and the
number of reported errors is approximately invariant for
each system release.

4. Organisational Over a program'’s lifetime, its rate of development is

stability approximately constant and independent of the
resources devoted to system development.

5. Conservation of
familiarity

Over the lifetime of a system, the incremental change in
each release is approximately constant.

change

e
7

X 7 /
/7 What determines the angle?
7

7 Quality!
/7 Maintainability
7/

time

Software Engineering 46

Maintenance costs

« Maintenance costs more than development
— loss of information
* time
« handovers
— less skilled people
— structure gets worse
« |t pays to invest in maintainability
— refactoring

Software Engineering a7

Refactoring 9.3.3

 During development
(evolutionary, incremental, agile)

» During maintenance

» "code smells”
« design patterns
» documentation

Software Engineering 48

Legacy systems

» Old systems
- >101L0OC
—date back to 70's
» Hardware no longer available
—"don’t touch it” not an option
« Business rules implicit in software
» Data— a lot of it!
—only accessable through this system

Software Engineering 49

2012-02-21

Legacy software

» Documentation lost (not maintained)
» Design — not modular

— overoptimized

— user interface (command line)
* Code —source code lost

- old language

Figure 9.13 An example of a legacy system assessment|

High business value High business value

,,I:oqu‘fahw High quality
e ™N Py
’ & N kee
(s 8) p
o 7 /

Low business value Low business value

Business value

Low quality High quality
TN =\
[1 3) 4

T " /scrap T

— unstructured
— badly patched »
Software Engineering 50 System quality
. . Figure 9.11 The reengineering process
Re-engineering

e Goal:
extract what we must / can reuse:
— knowledge: business rules
— data: conversion
—design, code?
* Why?
—reduce risk
—reduce cost

Software Engineering 52

Original | Program Re-engineered Original data
program documentation | program L
’ v /
p ./
Reverse
¥ y \‘ p
. p .

#| engineering |
Y VAN .
X 4 N Data
Source code | Program re-engineering |
wanslation | modularization \, .
~ _J -
= = B S
. /7 Program
4 structure
improvement
et %, Y
Restructured Re-engineered
program data

Legacy system wrapper

» Even if you keep the legacy system, ...
* how to interface with new systems

W e
r
a)
rovides
Legacy | iF;lterfaces
system p >
re [

Software Engineering 54

