2012-02-27

Quiality 24
Process Improvement 26
Real processes

* Cleanroom

*« RUP
« XP

Software Engineering 55

Figure 24.3 Process-based quality

\ \
(' befine process }—» Develop b [Assess product
\ /

y \ product y. \. quality Yy
g - ~ - . .
X
7 improve . N\ N quality ¥ /7 standardize
\. process \\\ oK

Product Quality

Acceptable: usable, learnable, compatible
Efficient: response time, memory use
Dependable: safe, reliable, secure
Maintainable: documented, structured

[Fig. 1.2, 24.2]

Software Engineering 57

Quality Management

» Organization
— defining standards
— defining processes
* Project
— quality plan
— checking outcome

Software Engineering 58

Quality Management

standards | Process quality
processes | Improvement assuw
select, adapt feedback | proof

quality
control

project

development process

Software Engineering 59

Quality Plan

* Product Quality Requirements
— safety/reliability analysis
—too good and over budget = quality
» Development plan
— standards, documentation
—required validation and verification actions
—release plan, config. management
* Process risks

Software Engineering 60

process)y

2012-02-27

Quality assessment

External attributes
—what is required
— measurable after completion (maybe)

— cannot be measured during development

Internal attributes

External quality attributes Internal attributes

— Depth of inheritance tree

Maintainability

Cyclomatic complexity

Reliability

Program size in lines
of code

Number of error

: messages
— can be measured during development _ L
sability
— predict external attributes (maybe) T—
. T— Length of user manual
* learn from experience B
Software Engineering 61 Software Engineering 62
Fan-in is a measure of the number of functions or methods that i iact-ori i i
C3R atioler esion o ottt (€85 . Forkout e e rumiber of Figure 24.12 The CK object-oriented metrics suite
functions that are called by function X. A high value for fan-in
means that X is tightly coupled to the rest of the design and
changes to X will have extensive knock-on effects. A high value
for fan-out suggests that the overall complexity of X may be high “Tnis is the number of mathods in each class, weighted by the complexity of each method. Therefore, a
because of the complexity of the control logic needed to
coordinate the called components. . Complex objects. ar
wmudm:muwnm mymymu Iogﬂlymﬂlwc 50 cannot be reused effectively
Length of code This is a measure of the size of a program. Generally, the larger as superciasses in an inheritance
the size of the code of a component, the more complex and Doplh of inherance tres This represerts he rumbse of o0 where subc herk aliibuiss
error-prone that component is likely to be. Length of code has (oIT). and operations (methods) from supclumsﬂ me deeper the inhentance tree, the more complex the
been shown to be one of the most reliable metrics for predicting design. Many object classes may have to be understood to understand the cbject classes at the leaves.
error-proneness in components. cifteles
Number of chidren This is a measure of the number of immediate subclasses in a class. It measures the breadth of a
Cyclomatic complexity This is a measure of the control complexity of a program. This (NOC) class hierarchy, whereas DIT measuros its depth. A high valuo for NOC may indicate greater rouse. It
control complexity may be related 1o program understandability. | may mean ;::dmt -ﬂmwunm be made in validating base classes because of the number of
discuss cyclomatic complexity in Chapter 8. e o e
Coupling between object Classes are coupled when methods in one class use methads or instance variables defined in a
Length of identifiers This is a measure of the average length of identifiers (names for classes (CBO) difforent class. CBO is a measure of how much coupling exists. A high value for CBO means that
variables, classes, methods, efc.) in a program. The longer the classes are highly dependent. and therefore it is more likely that changing one class will affect other
identifiers, the more likely they are to be meaningful and hence classes in tho program.
the more understandable the program. Rosponso foraclass RFC is a measure of the number of methods that could potentially be executed in response to a
(RFC) message received by an object of tha ciass. Again, RFC is related to complexity. The higher the vakie
Depth of conditional This is @ measure of the depth of nesting of if-statements in a for RFC, the more complex a class and hence the more kkely it is that it will include errors.
nesting program. Deeply nested if-statements are hard to understand Lack of cohesion in LCOM is calculated by considering pairs of methods in a class. LCOM is the difference between the
and mnhaﬂy error-prone. methods (LCOM) number of method pairs without shared attributes and the number of method pairs with shared
attributes. The value of this metric has been widely debated and it exists in several variations. It is not
Fog index This is a measure of the average length of words and sentences o3 clear i it really adds any additional, useful information over and above that provided by other metrics.

in documents. The higher the value of a document's Fog index,
the more difficult the document is to understand.

Measurement process

Choose measurements

— Goal - Question - Metric (GQM)
Select components

Measure

Identify anomalous values

—compared to normal product / company values

Analyse anomalous components

Software Engineering

65

Interpretation of metrics

Quality
perfect

quite good

useless

Measure: change requests / time

Software Engineering 66

2012-02-27

Quality Standards
150 9001
S k quality models
s Save wor ; T
. instantiated as
—no need to reinvent v
— supported by tools Organization || documents /" Organization
C t " d tlce" quality manual &\quahw process J
) T R G
ap ure goo prac . / is used to develop instantiated as
» Can define levels of quality P | " v
« Improve communication avmpon | | avoyoin | | avoimpon | gomen)
T T h T "~ ‘ =
* Product/ Process / ISO 9001 ,
Software Engineering 67 Supports

Process improvement

activities quality attributes standards Process Quality Fig. 26.2

product + maintainabity ~ * variable names « People actually follow it:
« usability « user documents '
« reliability + version mgm — acceptable, usable, learnable
measure)_act . understandability ~ * in§pection proc. * It delivers:
+ visibility * milestones — efficient, in time, acceptable product quality
process «+ robustness « change control
« Manageable

CDQ centification . 1SO 9001 — visible, robust to problems, reliable, adaptable
measure)_act °
© CMMI « Supportable

management
9 — documented, structured, measurable
Software Engineering 69 Software Engineering 70
Process measurement Process analysis
* Resources required * Questionnaires, interviews
—time —honesty is the best policy?
— money » Ethnographic studies
« Occurrence of events — observe the tribe
— failed system builds [insert Dilbert cartoon]
— missed deadlines
— missing process documents
Software Engineering 71 Software Engineering 72

2012-02-27

Implementing change

Introduce
-
— . e [process change
[Identify " Prioritize Tune
\ improvements p - pm(ess changes

engineers
) Y . R Y P ; Y)
Process Process change Tr.smmg Feedback on Revised pro(ess
model plan plan improvements model
Software Engineering 73

Capability Maturity Model 26.5

» Process areas (22 in CMMI)
» Maturity levels
0. incomplete

initial
1. performed
2. managed
3. defined
4. quantitatively managed
5. optimizing
Software Engineering 74

Figure 26.7 Process areas in the CMMI

P roces s Organizational process manag
management definition (OPD) (REOM)
%ga;;izauonal D R Requirements development (RD)

Organizational training (OT) Technical solution (TS)

Organizational process
performance (OPP)
Organizational innovation and
deployment (OID)

Product integration (Pl)
Verification (VER)

Project Validation (VAL
management Project planning (PP) (VAL)
Project monitoring and control)
(PMC) Support Configuration management (CM)
Supplier agreement Process and product quality
management (SAM) management (PPQA)
:nl:‘:ggr::"[[TI:M)F rojact Measurement and analysis (MA)

Risk management (RSKM) (DDE:EJ‘O" enalysis and resolution

Quantitative project Causal analysis and resolution
management (QPM) (CAR)

Various CMMs

» Staged CMM
— classify organisation
» Continuous CMM
— classify each practice (next slide)

e The "CMM Principle”
— P-CMM 22.2 People management processes

Software Engineering 76

Figure 26.11 A process capability profile

Project monitoring
and control

Supplier agreement
managnmnm

Risk
management

Configuration
management

Requirements.
management

Verification

Validation

What is the company goal?

» Usually level 3 is good enough
—unless you're NASA
—or a new company in India
» The lower end of the scale
-1. We don't care about quality
-2. Let's do all the paperwork - but not the job

-3. Quality is for the weak.
Real programmers need no documentation

Software Engineering 78

2012-02-27

Real Processes

» A combination of "best practices”
* Need to be adapted

— start with a standard

—adapt

—introduce

— monitor - change
» Supported by tools and standards

Software Engineering 79

Cleanroom (1987) 15.1

» Goal: zero-defect software

* Ingredients
— formal specification

Teams
specification

—incremental development

— structured programming

development

— static verification (inspections - no tests!)

— statistical system testing

Software Engineering

certification

80

Inception ‘l Elaboration J

l Construction H Transition I

[DISCIPLINES

JBUSINESS MODELLING

|

| |

| | |
. I

|

P e
A.-;—.;.‘_

JREQUIREMENTS

Janar vsis & DESIGN /Jf’/__\—\%/__\/—__i[r—“
MPLEMENTATION _J‘»/_“{/i _;/17¥
resT e | gy

I | /_,—l——\
JoEPLOYMENT | l 1

ONFIGURATION & CHANGE MANAGEMENT

PROJECT MANAGEMENT

- | |
Rational e s) e e [
Unified [eramions
Process
(RU P) Software Engineering 81

» Goals:
— realistic
—reuse
—tool support
* Incremental and iterative
« 00, UML, visual models, components
« Quality: support processes, transition

Software Engineering

Rational Unified Process

82

Traditional vs. Agile .

» Follow a plan « People
» Change costs « Embrace change
» Frozenrequirements e« User stories, tests,

contract customer involvement
» Documentation « Working software
» Deliverables at a ¢ Time-boxed

deadline

incrementa! .
« smaller increments

Software Engineering 83

Incremental
planning and
development

Sprints
Sprint backlog
Planning poker

Implement user stories
Story cards
Planning poker

Customer Product owner Customer representative in
involvement Demo at end of sprint development team
People, Scrum meetings Pair programming

not process

Sustainable pace (time-boxed)

Collective ownership of code
Sustainable pace

Embrace Change occurs from one sprint to the | Continuous integration and release
change next Test-first development

Maintain Refactoring Refactoring

simplicity No anticipation of future No anticipation of future

requirements

requirements

Gm) Prevas project model (detailed)

2012-02-27

