2012-02-06

Critical Systems Dependable Systems

» System failure can lead to
— Loss of life
— Damage to the environment
— Loss of much money

Availability - ready for use Good things

Reliability - works as it should |happen
| with some probability

« Safety - does no damage Bad things

* Security - resists intrusion | don’t happen
‘ or with very low probability

 Cost of failure > Cost of the system

Software Engineering 1

Software Engineering 2

Figure 10.1 The sociotechnical systems stack
System perspective
l Society
. Peop|e A l Organization
° Sof-tware } R Environment l Business processes N
» Hardware l Application system
Systems Soﬁtware
engineenng ‘ Communications and data management engineenng
l Operating system \J
Y ‘ Equipment
Software Engineering 3
\-
O Q
©)
Issues o & o° A
& N : RO
‘6\ O g\q (\
. <& R & A2
* Requirements
— How to express dependability (measures i
press dep Y () Avail & 1145 1153 15.2
—How much is required? Reliab. 13
* Design, Implementation Safety [11.3 |12.2/5 15.1/4/5
— How to make the system dependable?
« Verification Secure (11.4 124 14 |[15.3
— How to verify dependability Sommerville 9th edition
Software Engineering 5 Software Engineering 6

2012-02-06

Terminology
Fault - static: undesirable state
Failure - dynamic: undesirable behaviour
Hazard - situation out of control

Accident - event(s) causing damage
Damage - resulting loss

Software Engineering 7

Reliability metrics [12.3.1]

AVAIL probability that system is available
POFOD Probability Of Failure On Demand
—irregular use: fire alarm

ROCOF Rate of OCcurrence Of Failure
—regular use: coffee machine

— per time unit (week) or usage (per 1000 cups)
MTTF Mean Time To Failure

— long transactions (editor)
= 1/ROCOF

Software Engineering 8

Specify per failure!

 Planned / unplanned unavailability
» Transient / Permanent (requires service)

 Corrupting data?

Software Engineering 9

Reliability costs - be realistic!

« POFOD
— can be quite high: 1/100 - 1/1000
* AVAIL
- 99% - 14 minutes/day
—99.9% - 10 minutes/week
—99.99% - 1 minute/week
—99.999% - 5 minutes/year

« Low probabilities cannot be tested!

Software Engineering 10

Reliability testing [15.2]

« Statistical testing

— does not work for very high reliability
— fault injection

unknown injected
faults faults
found
not
found ?

Software Engineering 1

Safety Terminology

Fault

Failure Hazard probability
Hazard Risk
Accident | Hazard severity

Damage

Software Engineering 12

2012-02-06

Risk-driven analysis

Figure 12.3 Risk classification for the insulin pump

« Example (railway operation)

re Engineering

1.Insul lg&urdusc Medium High High Intolerable
. o . comput n
* Hazard identification 00,)) e T
—what are the hazards? Up 4 e
o R|Sk assessment /)Ol,l, .::;IF:\E:::OI Medium Medium Low ALARP
/e monitoring system
—risk from this hazard is acceptable? 0:98 GRS (6 e Low Acceptable
. Hazard ana|ys|s ﬁ;mg:ﬂued High High High Intolerable
6. Machine breaks Low High Medium ALARP
—how does the hazard occur? In patient
. . l'l‘.'MT‘(:I’\Ir\e causes Medium Medium Medium ALARP
 Risk reduction ¢ o - - s —
nterference
Software Engineering 13 9. Allergic reaction Low Low Low Acceptable
Figure 12.4 An example of a fault tree
Hazard analysis Risk reduction
L Fault avoidance / correction
Fault
_ Fault tolerance
| Failure .
L) Hazard detection
- L Hazard
Accident L
= EA IR IEA Damage limitation
=|2 Damage
Jrres— Mithmatic Ngceehm pr— Software Engineering 16
e | =
{ System environment]
Design principles , i Protection
Y
. .. Protection S Stem
» Minimize the critical part { oo sensors]‘ y hitect
— cost increases much with size and safety Y lr architecture

Protection
system Control system

Controlled
equipment

Software Engineering 18

2012-02-06

Fault tolerance

Fault —&— Failure

» Hardware faults
—works ... fails
 Software faults
— present from the start
¢ Human error

Software Engineering 19

Human error [10.5.1]

* Humans will make errors
— the system needs barriers

Active failure
(Human error)

—
—

e
_—

-—

System failure Barriers

Software Engineering

20

Human error

* The human made the error because ...
— lack of information
— information overload
— badly designed user interface
— "official” routines are not practical
— pressure to take "shortcuts”
— inadequate training / practice

Technology

Organisation

Software Engineering 21

Fault tolerance

 Detect fault
* Avoid failure

—go into safe state

— less functionality

— railway example: all signals red

— traffic light example: blinking yellow
» Make sure fault is noticed

Software Engineering

22

Safe state design

» Example: railway track indicator lamp

T ~——~

— Lamp on =track is free
— Lamp off = train detected

o Why?
— What if the lamp fails ...

Software Engineering 23

Safety devices

* Simple

* Preferably in hardware

* Preferably autonomous
—depend on gravity, not electricity

« Example (Therac-25)

Software: 2 modes.
... Strong beam requires
filter in place

beam

patient

oftware Engineering

24

2012-02-06

Fault tolerance techniques

* Redundancy (spare components)
— best for hardware
— for safety, availability

« Diversity (different components)
— design errors (SW, HW)
— different hardware, supplier, software
— simpler secondary system

* Monitoring

Software Engineering 25

Figure 13.5 Airbus flight control system architecture

Input value

Yoy

Software diversity

» N-version programming
« Diversity in
— design method
— programming language
—tools
« Problem: specification errors
— formal specification + verification

Software Engineering 27

Fault avoidance

* Formal development
» Dependable programming [13.4]
— Hiding, ADT, OOP
— Name all constants
— Check inputs, array bounds
— Exception handling
— Timeoults, restarts, rollbacks

Software Engineering 28

< Minimize error-prone constructs
— pointers - pointer arithmetic
* impossible to verify too

— dynamic memory management
« stack overflow (recursion)

— floating point numbers

» beware of integer overflow too
— aliasing, inheritance (name - object)
— parallelism, interrupts

Software Engineering 29

Fault detection and correction

» Cannot test "shall not” requirements
» Formal verification [15.1]
— Model checking
— Correctnes proofs
» Safety cases [15.5]
— Structured argument: "this cannot happen”
— Producing the argument reveals:
"it can happen” = fault detection

Software Engineering 30

2012-02-06

Process [13.2, 15.4] Process

 Standardized process
— Precise specification
« Assign Safety Integrity Level (SIL)
— Safety reviews (hazard monitoring)

* Documentation
— Auditable

Independent safety regulator

— process is dependable
— Diverse verification « do we have the right process
(inspection, model checking, test, proof) — process is followed
- Version management - are we doing the process right
 Quality culture (process is accepted)

Software Engineering 31

Software Engineering 32

