
2012-02-06

1

Software Engineering 1

Critical Systems

• System failure can lead to
– Loss of life

– Damage to the environment

– Loss of much money

• Cost of failure > Cost of the system

Software Engineering 2

Dependable Systems

• Availability - ready for use

• Reliability - works as it should

• Safety - does no damage

• Security - resists intrusion

Good things
happen

Bad things
don’t happen

with some probability

or with very low probability

Software Engineering 3

System perspective

• People

• Software

• Hardware
• Environment

Software Engineering 4

Software Engineering 5

Issues

• Requirements
– How to express dependability (measures)

– How much is required?

• Design, Implementation
– How to make the system dependable?

• Verification
– How to verify dependability

Software Engineering 6

Sommerville 9th edition

2012-02-06

2

Software Engineering 7

Terminology

Fault - static: undesirable state

Failure - dynamic: undesirable behaviour

Hazard - situation out of control

Accident - event(s) causing damage

Damage - resulting loss

Software Engineering 8

Reliability metrics [12.3.1]

• AVAIL probability that system is available

• POFOD Probability Of Failure On Demand
– irregular use: fire alarm

• ROCOF Rate of OCcurrence Of Failure
– regular use: coffee machine

– per time unit (week) or usage (per 1000 cups)

• MTTF Mean Time To Failure
– long transactions (editor)

= 1/ROCOF

Software Engineering 9

Specify per failure!

• Planned / unplanned unavailability

• Transient / Permanent (requires service)

• Corrupting data?

Software Engineering 10

Reliability costs - be realistic!

• POFOD
– can be quite high: 1/100 - 1/1000

• AVAIL
– 99% - 14 minutes/day

– 99.9% - 10 minutes/week

– 99.99% - 1 minute/week

– 99.999% - 5 minutes/year

• Low probabilities cannot be tested!

Software Engineering 11

Reliability testing [15.2]

• Statistical testing
– does not work for very high reliability

– fault injection
unknown injected
faults faults

found

not
found ?

Software Engineering 12

Safety Terminology

Fault

Failure

Hazard

Accident

Damage

Hazard probability

Hazard severity

Risk

2012-02-06

3

Software Engineering 13

Risk-driven analysis

• Hazard identification
– what are the hazards?

• Risk assessment
– risk from this hazard is acceptable?

• Hazard analysis
– how does the hazard occur?

• Risk reduction

Software Engineering 14

Software Engineering 15

Hazard analysis

Software Engineering 16

Risk reduction

Fault

Failure

Hazard

Accident

Damage

Fault avoidance / correction

Fault tolerance

Hazard detection

Damage limitation

Software Engineering 17

Design principles

• Minimize the critical part
– cost increases much with size and safety

• Example (railway operation)

Track
Signals
Trains

System for
optimal operation

timetable rules operators

Safety
checkNo!

Software Engineering 18

Protection
system
architecture

2012-02-06

4

Software Engineering 19

Fault tolerance

• Fault Failure

• Hardware faults
– works … fails

• Software faults
– present from the start

• Human error

X

Software Engineering 20

Human error [10.5.1]

• Humans will make errors
– the system needs barriers

Software Engineering 21

Human error

• The human made the error because ...
– lack of information

– information overload

– badly designed user interface

– ”official” routines are not practical

– pressure to take ”shortcuts”

– inadequate training / practice

Technology

Organisation

Software Engineering 22

Fault tolerance

• Detect fault

• Avoid failure
– go into safe state

– less functionality

– railway example: all signals red

– traffic light example: blinking yellow

• Make sure fault is noticed

Software Engineering 23

Safe state design

• Example: railway track indicator lamp

– Lamp on = track is free

– Lamp off = train detected

• Why?
– What if the lamp fails ...

Software Engineering 24

Safety devices

• Simple

• Preferably in hardware

• Preferably autonomous
– depend on gravity, not electricity

• Example (Therac-25)

patient

beam

Software: 2 modes.
Strong beam requires
filter in place

2012-02-06

5

Software Engineering 25

Fault tolerance techniques

• Redundancy (spare components)
– best for hardware

– for safety, availability

• Diversity (different components)
– design errors (SW, HW)

– different hardware, supplier, software

– simpler secondary system

• Monitoring
Software Engineering 26

Software Engineering 27

Software diversity

• N-version programming

• Diversity in
– design method

– programming language

– tools

• Problem: specification errors
– formal specification + verification

Software Engineering 28

Fault avoidance

• Formal development

• Dependable programming [13.4]
– Hiding, ADT, OOP

– Name all constants

– Check inputs, array bounds

– Exception handling

– Timeouts, restarts, rollbacks

Software Engineering 29

• Minimize error-prone constructs
– pointers - pointer arithmetic

• impossible to verify too

– dynamic memory management
• stack overflow (recursion)

– floating point numbers
• beware of integer overflow too

– aliasing, inheritance (name - object)

– parallelism, interrupts

Software Engineering 30

Fault detection and correction

• Cannot test ”shall not” requirements

• Formal verification [15.1]
– Model checking

– Correctnes proofs

• Safety cases [15.5]
– Structured argument: ”this cannot happen”

– Producing the argument reveals:
”it can happen” = fault detection

2012-02-06

6

Software Engineering 31

Process [13.2, 15.4]

• Standardized process
– Precise specification

• Assign Safety Integrity Level (SIL)

– Safety reviews (hazard monitoring)

– Diverse verification
(inspection, model checking, test, proof)

– Version management

• Quality culture (process is accepted)
Software Engineering 32

Process

• Documentation
– Auditable

• Independent safety regulator
– process is dependable

• do we have the right process

– process is followed
• are we doing the process right

