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Evolution - Maintenance 9.1-9.3

Configuration management    25

Legacy systems 9.4

Re-engineering 9.3.2

After Deployment
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• Leave change request open

• Follow normal change request routine

Maintenance / evolution / configuration 
management 

Fig 9.4 adapted
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Impact analysis

• Change Control Board
– benefits of the change

– number of users affected

– what if no change?

– cost

• If change:
– priority

– fit in release cycle
Software Engineering 37



2012-02-21

2

Software Engineering 38

Configuration items

• requirements

• design documents

• code - modules

• test suites

• documentation

• installation files/routines
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Terminology

• Version
– of an item

– unique identifier

• Baseline
– collection that cannot be changed (fall-back)

• Release
– delivered to customer
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Tool support

• Database

• Editing: check out ... check in

• System build

• Regression test

• Change reports, documentation
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Evolution Dynamics (Lehman)

Law Description
1. Continuing change A program that is used in a real-world environment 

necessarily must change or become progressively less 
useful in that environment.

7. Declining quality The quality of systems will appear to be declining unless 
they are adapted to changes in their operational 
environment.

6. Continuing growth The functionality offered by systems has to continually 
increase to maintain user satisfaction.

2. Increasing 
complexity

As an evolving program changes, its structure tends to 
become more complex. Extra resources must be 
devoted to preserving and simplifying the structure.
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Constant pace of change
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Law Description
8. Feedback system Evolution processes incorporate multi-agent, 

multi-loop feedback systems and 
you have to treat them as feedback systems 
to achieve significant product improvement.

3. Large program 
evolution

Program evolution is a self-regulating process. System 
attributes such as size, time between releases and the 
number of reported errors is approximately invariant for 
each system release.

4. Organisational 
stability

Over a program’s lifetime, its rate of development is 
approximately constant and independent of the 
resources devoted to system development.

5. Conservation of 
familiarity

Over the lifetime of a system, the incremental change in 
each release is approximately constant.
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What determines the angle?

Quality!
Maintainability

Maintenance costs

• Maintenance costs more than development
– loss of information

• time

• handovers

– less skilled people

– structure gets worse

• It pays to invest in maintainability
– refactoring
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Refactoring 9.3.3

• During development 
(evolutionary, incremental, agile)

• During maintenance

• ”code smells”

• design patterns

• documentation
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Legacy systems

• Old systems
– > 1011 LOC

– date back to 70’s

• Hardware no longer available
– ”don’t touch it” not an option

• Business rules implicit in software

• Data – a lot of it!
– only accessable through this system
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Legacy software

• Documentation lost (not maintained)

• Design – not modular 
– overoptimized
– user interface (command line)

• Code – source code lost 
– old language 
– unstructured
– badly patched
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scrap

keep?!

Re-engineering

• Goal: 
extract what we must / can reuse:
– knowledge: business rules

– data: conversion

– design, code?

• Why?
– reduce risk

– reduce cost
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Legacy system wrapper

• Even if you keep the legacy system, ...

• how to interface with new systems
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