
2012-02-21

1

Evolution - Maintenance 9.1-9.3

Configuration management 25

Legacy systems 9.4

Re-engineering 9.3.2

After Deployment

Software Engineering 33

Maintenance

Develop
-ment

Emergency code repair Fig 9.6

Software Engineering 34

• Leave change request open

• Follow normal change request routine

Maintenance / evolution / configuration
management

Fig 9.4 adapted
Change request

Requirements
specification

Impact
analysis

reject

Release
planning
(design)

Design
documents

Implementation

Regression and
Acceptance test

Code and
documentation

Test suite
Update

Test suite

Integration test

Unit tests

Configuration
Management

Configuration(s)

Software Engineering 36

Impact analysis

• Change Control Board
– benefits of the change

– number of users affected

– what if no change?

– cost

• If change:
– priority

– fit in release cycle
Software Engineering 37

2012-02-21

2

Software Engineering 38

Configuration items

• requirements

• design documents

• code - modules

• test suites

• documentation

• installation files/routines

Software Engineering 39

Terminology

• Version
– of an item

– unique identifier

• Baseline
– collection that cannot be changed (fall-back)

• Release
– delivered to customer

Software Engineering 40

Tool support

• Database

• Editing: check out ... check in

• System build

• Regression test

• Change reports, documentation

Software Engineering 41

Software Engineering 42 Software Engineering 43

2012-02-21

3

Evolution Dynamics (Lehman)

Law Description
1. Continuing change A program that is used in a real-world environment

necessarily must change or become progressively less
useful in that environment.

7. Declining quality The quality of systems will appear to be declining unless
they are adapted to changes in their operational
environment.

6. Continuing growth The functionality offered by systems has to continually
increase to maintain user satisfaction.

2. Increasing
complexity

As an evolving program changes, its structure tends to
become more complex. Extra resources must be
devoted to preserving and simplifying the structure.

Software Engineering 44

Constant pace of change

Software Engineering 45

Law Description
8. Feedback system Evolution processes incorporate multi-agent,

multi-loop feedback systems and
you have to treat them as feedback systems
to achieve significant product improvement.

3. Large program
evolution

Program evolution is a self-regulating process. System
attributes such as size, time between releases and the
number of reported errors is approximately invariant for
each system release.

4. Organisational
stability

Over a program’s lifetime, its rate of development is
approximately constant and independent of the
resources devoted to system development.

5. Conservation of
familiarity

Over the lifetime of a system, the incremental change in
each release is approximately constant.

Software Engineering 46

time

change

x

What determines the angle?

Quality!
Maintainability

Maintenance costs

• Maintenance costs more than development
– loss of information

• time

• handovers

– less skilled people

– structure gets worse

• It pays to invest in maintainability
– refactoring

Software Engineering 47

Refactoring 9.3.3

• During development
(evolutionary, incremental, agile)

• During maintenance

• ”code smells”

• design patterns

• documentation

Software Engineering 48

Legacy systems

• Old systems
– > 1011 LOC

– date back to 70’s

• Hardware no longer available
– ”don’t touch it” not an option

• Business rules implicit in software

• Data – a lot of it!
– only accessable through this system

Software Engineering 49

2012-02-21

4

Legacy software

• Documentation lost (not maintained)

• Design – not modular
– overoptimized
– user interface (command line)

• Code – source code lost
– old language
– unstructured
– badly patched

Software Engineering 50 Software Engineering 51

scrap

keep?!

Re-engineering

• Goal:
extract what we must / can reuse:
– knowledge: business rules

– data: conversion

– design, code?

• Why?
– reduce risk

– reduce cost
Software Engineering 52 Software Engineering 53

Legacy system wrapper

• Even if you keep the legacy system, ...

• how to interface with new systems

Software Engineering 54

Legacy
system

w
r
a
p
p
e
r

provides
interfaces

