Workload Models

Pontus Ekberg

Uppsala University

2018-10-11

(With some slides borrowed from Martin Stigge)
Recap

A sporadic task τ_i is given by a triple $(C_i, D_i, T_i) \in \mathbb{N}^3$, where

- C_i is the worst-case execution time (WCET),
- D_i is the relative deadline, and
- T_i is the minimum inter-release separation time (or just period).

$\tau_i = (C_i, D_i, T_i) = (3, 6, 10)$
Today’s topic

1. We will look at a few *generalizations* of the sporadic task model, which allow for more complicated patterns of job releases.

2. We will outline analysis techniques for feasibility (or EDF-schedulability) for one of these task models.
Recall the feasibility test for sporadic tasks

A sporadic task set \mathcal{T} is feasible on a single preemptive processor iff

$$\forall t, \text{ such that } t \geq 0 : \quad \text{dbf}(\mathcal{T}, t) \leq t.$$
Recall the feasibility test for sporadic tasks

\[\text{Recall the feasibility test for sporadic tasks} \]

\[(C_i, D_i, T_i) \]
Recall the feasibility test for sporadic tasks:

\[C_i; D_i; T_i \]

\[\text{dbf}(i; t) = \max(0; \lfloor t \cdot D_i \cdot T_i \rfloor + 1) \]

\[\text{dbf}(T; t) = \sum_i \text{dbf}(i; t) \]

\[(C_i, D_i, T_i)\]
Recall the feasibility test for sporadic tasks

\[C_i; D_i; T_i \]

\[D_i T_i C_i^{dbf}(i; t) = \max(0; \lfloor t D_i T_i \rfloor + 1) \]

\[C_i^{dbf}(T; t) = \sum_i 2 T_i^{dbf}(i; t) \]
Recall the feasibility test for sporadic tasks

$\text{Recall the feasibility test for sporadic tasks}$

$$(C_i, D_i, T_i)$$
Recall the feasibility test for sporadic tasks

\[C_i; D_i; T_i \]

\[t \]

\[C_{i} \text{dbf}(T; t) = \sum_{i} C_{i} \text{dbf}(i; t) \]

\[D_i \quad T_i \]

\[(C_i, D_i, T_i) \]
Recall the feasibility test for sporadic tasks.

\[
dbf(\tau_i, t) = \max \left(0, \left\lfloor \frac{t - D_i}{T_i} \right\rfloor + 1 \right) \cdot C_i
\]

\((C_i, D_i, T_i)\)
Recall the feasibility test for sporadic tasks

\begin{align*}
\text{dbf}(\tau_i, t) &= \max \left(0, \left\lfloor \frac{t-D_i}{T_i} \right\rfloor + 1 \right) \cdot C_i \\
\text{dbf}(\mathcal{T}, t) &= \sum_{\tau_i \in \mathcal{T}} \text{dbf}(\tau_i, t)
\end{align*}

\((C_i, D_i, T_i)\)
Recall the feasibility test for sporadic tasks

\[t + t + t + t = t, \]

such that

\[t \geq 0 : \]

\[dbf(T; t) \leq t. \]
Recall the feasibility test for sporadic tasks

\[
dbf(T; t) \leq t
\]
Recall the feasibility test for sporadic tasks:

\[t_1 + t_2 + t_3 + \cdots \leq t \]

such that \(t \geq 0 \):

\[dbf(T; t) \leq t \]
Recall the feasibility test for sporadic tasks

\[\forall t, \text{ such that } t \geq 0 : \quad \text{dbf}(\mathcal{J}, t) \leq t \]
Recall the feasibility test for sporadic tasks

\[t^+ + t^+ + t^+ + t^+ = t^8 \]

such that \(t \geq 0 \):

\[\text{dbf}(\mathcal{T}, t) \leq t \]

\(\forall t, \text{ such that } t \geq 0 : \text{dbf}(\mathcal{T}, t) \leq t \)
Recall the feasibility test for sporadic tasks:

$$\forall t, \text{ such that } t \geq 0 : \quad \text{dbf}(\mathcal{T}, t) \leq t$$
Recall the feasibility test for sporadic tasks:

$\text{slope} = \frac{\sum_i C_i}{\sum_i C_i}$

$\text{HP}(T) = \text{LCM of periods}$
Recall the feasibility test for sporadic tasks

\(HP(J) = \text{LCM of periods} \)
Recall the feasibility test for sporadic tasks

\[HP(\mathcal{J}) = \text{LCM of periods} \]

\[\text{slope} = U(\mathcal{J}) \]
Recall the feasibility test for sporadic tasks

\[\text{HP}(\mathcal{J}) = \text{LCM of periods} \]

\[\text{slope} = U(\mathcal{J}) \]
Recall the feasibility test for sporadic tasks

\[\text{HP}(\mathcal{J}) = \text{LCM of periods} \]

\[\text{slope} = U(\mathcal{J}) \]
Recall the feasibility test for sporadic tasks:

\[\text{HP}(\mathcal{J}) = \text{LCM of periods} \]

\[\text{slope} = U(\mathcal{J}) \]

\[\sum_i C_i \]

\[\sum_i C_i \]
Recall the feasibility test for sporadic tasks

$$\text{HP}(J) = \text{LCM of periods}$$

$$\sum_i C_i = \frac{\sum_i C_i}{1 - U(J)}$$

slope $= U(J)$
Example code structure for a periodic/sporadic task:

```plaintext
loop
  // Execute some function for, e.g.,
  // up to 11ms
  // (obtained via WCET analysis)
  delay until Previous_Period + 50ms;
end loop;
```
Generalizing sporadic tasks

• Example code structure for a periodic/sporadic task:

```
loop
    // Execute some function for, e.g.,
    // up to 11ms
    // (obtained via WCET analysis)
    delay until Previous_Period + 50ms;
end loop;
```

• What if the structure is more complicated?
A more complicated control structure

- Code is not always periodic:

```plaintext
loop

  // Execute some function
  delay until Period_Start + 50ms;

  // Execute another function
  delay until Prev_Function + 30ms;

  // Execute yet another function
  delay until Prev_Function + 70ms;

end loop;
```
A more complicated control structure

- Code is not always periodic:

```plaintext
loop

// Execute some function
delay until Period_Start + 50ms;

// Execute another function
delay until Prev_Function + 30ms;

// Execute yet another function
delay until Prev_Function + 70ms;

end loop;
```

- Here a task is split in *frames*, each with own
 - Execution time
 - Inter-release separation until next frame
 - Relative deadline
The Generalized Multiframe (GMF) Task Model

- Each task *cycles* through job types
 - Vector for WCET \((e^{(1)}, \ldots, e^{(n)}) \)
 - Vector for deadlines \((d^{(1)}, \ldots, d^{(n)}) \)
 - Vector for minimum inter-release delays \((p^{(1)}, \ldots, p^{(n)}) \)
The Generalized Multiframe (GMF) Task Model

- Each task *cycles* through job types
 - Vector for WCET \((e^{(1)}, \ldots, e^{(n)})\)
 - Vector for deadlines \((d^{(1)}, \ldots, d^{(n)})\)
 - Vector for minimum inter-release delays \((p^{(1)}, \ldots, p^{(n)})\)
The Generalized Multiframe (GMF) Task Model

Diagram showing a cycle of tasks j_1, j_2, j_3, j_4, j_5 with edges connecting them:

- j_1 to j_2: labeled 15
- j_1 to j_3: labeled 12
- j_2 to j_3: labeled 5
- j_2 to j_5: labeled 30
- j_3 to j_4: labeled 10
- j_4 to j_5: labeled 5
- j_5 to j_1: labeled 4
- j_1 to j_3: labeled 4
- j_2 to j_4: labeled 30
- j_3 to j_5: labeled 27
- j_4 to j_1: labeled 10
- j_5 to j_2: labeled 8

Each task is connected to the next in the cycle.
The Generalized Multiframe (GMF) Task Model
The Generalized Multiframe (GMF) Task Model
The Generalized Multiframe (GMF) Task Model

Diagram:

- Node j_1 connected to j_2 with weight 15
- Node j_2 connected to j_3 with weight 5
- Node j_3 connected to j_4 with weight 30
- Node j_4 connected to j_5 with weight 10
- Node j_5 connected to j_1 with weight 12

Weights:
- From j_1 to j_2: 4
- From j_2 to j_3: 2
- From j_3 to j_4: 10
- From j_4 to j_5: 3
- From j_5 to j_1: 9

Nodes:
- j_1, j_2, j_3, j_4, j_5
The Generalized Multiframe (GMF) Task Model

- j_1 connected to j_2 with weight 15
- j_2 connected to j_3 with weight 5
- j_3 connected to j_4 with weight 30
- j_4 connected to j_5 with weight 10
- j_5 connected to j_1 with weight 12

Weights:
- j_1 to j_2: 15
- j_2 to j_3: 5
- j_3 to j_4: 30
- j_4 to j_5: 10
- j_5 to j_1: 12

Task States:
- j_1: $\langle 4, 9 \rangle$
- j_2: $\langle 2, 5 \rangle$
- j_3: $\langle 10, 27 \rangle$
- j_4: $\langle 1, 10 \rangle$
- j_5: $\langle 3, 8 \rangle$
The Generalized Multiframe (GMF) Task Model

The diagram illustrates the relationships and timelines among the tasks, with specific event times and durations.
The Generalized Multiframe (GMF) Task Model
The Generalized Multiframe (GMF) Task Model

- Each task *cycles* through job types
 - Vector for WCET \((e^{(1)}, \ldots, e^{(n)})\)
 - Vector for deadlines \((d^{(1)}, \ldots, d^{(n)})\)
 - Vector for minimum inter-release delays \((p^{(1)}, \ldots, p^{(n)})\)
The Generalized Multiframe (GMF) Task Model

- Each task *cycles* through job types
 - Vector for WCET \((e^{(1)}, \ldots, e^{(n)})\)
 - Vector for deadlines \((d^{(1)}, \ldots, d^{(n)})\)
 - Vector for minimum inter-release delays \((p^{(1)}, \ldots, p^{(n)})\)

- Schedulability analysis for EDF?
 - Use the demand bound function, like for sporadic tasks
 - How to calculate dbf? What about the bound?
 - Exercise for the interested!
 - Read more in *Generalized Multiframe Tasks* (Baruah et al., 1999)
Generalize differently?

- What about *branches*?

```plaintext
loop
  // Execute some function
  delay until Period_Start + 50ms;
  if (condition) then {
    // Execute another function
    delay until Prev_Function + 30ms;
  } else {
    // Execute yet another function
    delay until Prev_Function + 70ms;
  }
end loop;
```

Each task is a tree. Vertices represent jobs. Edges represent control flow and delays. Restarted once a leaf is reached.
What about *branches*?

```plaintext
loop
    // Execute some function
    delay until Period_Start + 50ms;
    if (condition) then {
        // Execute another function
        delay until Prev_Function + 30ms;
    } else {
        // Execute yet another function
        delay until Prev_Function + 70ms;
    }
end loop;
```

Each task is a *tree*

- Vertices represent jobs
- Edges represent control flow and delays
- Restarted once a leaf is reached
The Recurring Branching (RB) Task Model

- Introduces \textit{branching} structures
- A \textit{tree} for each task
 - Vertices \textit{j}: job types with WCET and deadline \(\langle e(j), d(j) \rangle\)
 - Edges \((j_i, j_k)\): minimum inter-release delays \(p(j_i, j_k)\)
The Recurring Branching (RB) Task Model

- Introduces *branching* structures
- A *tree* for each task
 - Vertices j: job types with WCET and deadline $\langle e(j), d(j) \rangle$
 - Edges (j_i, j_k): minimum inter-release delays $p(j_i, j_k)$
 - General period parameter P

Feasibility analysis is also dbf-based, rather involved. Read more in Feasibility analysis of recurring branching tasks (Baruah, 1998)
The Recurring Branching (RB) Task Model

- Introduces branching structures
- A tree for each task
 - Vertices \(j \): job types with WCET and deadline \(<e(j), d(j)> \)
 - Edges \((j_i, j_k) \): minimum inter-release delays \(p(j_i, j_k) \)
 - General period parameter \(P \)

- Feasibility analysis is also dbf-based, rather involved
- Read more in Feasibility analysis of recurring branching tasks (Baruah, 1998)
Generalize further?

- Now we can model:
 - Periodic behavior
 - Multiple frames
 - Branching behavior
- Still not possible:
 - Local loops
 - Local modes
 - ...

```plaintext
loop
  f1();
  delay ...
  if (cond) then {
    while (cond2) {
      f2();
      delay ...
    }
  }
  else {
    f3();
    delay ...
  }
end loop;
```
The Digraph Real-Time (DRT) Task Model

- Generalizes sporadic, GMF, RRT (almost), ...
- **Directed graph** for each task
 - Vertices j: job types with WCET and deadline $\langle e(j), d(j) \rangle$
 - Edges (j_i, j_k): minimum inter-release delays $p(j_i, j_k)$
DRT: Semantics

Path = (j_4)
Path = (j_4; j_2)
Path = (j_4; j_2; j_3)

\(\langle 2, 5 \rangle \)
\(\langle 1, 8 \rangle \)
\(\langle 3, 8 \rangle \)

\(\langle 2, 5 \rangle \)
\(\langle 1, 8 \rangle \)
\(\langle 5, 10 \rangle \)

\(\langle 1, 5 \rangle \)
Path $\pi = (j_4)$
Path $\pi = (j_4, j_2)$
DRT: Semantics

Path $\pi = (j_4, j_2, j_3)$
The main result about demand bound functions still holds:

A task set $\mathcal{T} = \{\tau_1, \ldots, \tau_n\}$ of DRT tasks is feasible on a single preemptive processor iff

$$\forall t \geq 0 : \sum_{\tau_i \in \mathcal{T}} \text{dbf}(\tau_i, t) \leq t.$$
The main result about demand bound functions still holds:

Theorem

A task set $\mathcal{J} = \{\tau_1, \ldots, \tau_n\}$ of DRT tasks is feasible on a single preemptive processor iff

$$\forall t \geq 0 : \sum_{\tau_i \in \mathcal{J}} \text{dbf}(\tau_i, t) \leq t.$$

Thus, do as before:

1. Compute demand bound functions $\text{dbf}(\tau_i, t)$.
 - How to do that for a given t?

2. Test the inequality for all $t \leq B$ for some bound B.
 - How to derive the bound B?
Demand pairs

- Recall demand bound function:
 - Interval length t, sum all demand ...
 - ... of jobs *released* and with *deadline* inside
Demand pairs

- Recall demand bound function:
 - Interval length t, sum all demand ...
 - ... of jobs released and with deadline inside

- Consider a path in a task’s graph:

![Diagram of task graph]

Execution demand:

$$5 + 1 + 3 = 9$$

Interval size:

$$20 + 15 + 8 = 43$$

Demand pair

$$\langle 9; 43 \rangle$$
Demand pairs

- Recall demand bound function:
 - Interval length t, sum all demand ...
 - ... of jobs *released* and with *deadline* inside

- Consider a path in a task’s graph:

 ![Diagram](image)

 Execution demand:
 \[5 + 1 + 3 = 9\]

 Interval size:
 \[20 + 15 + 8 = 43\]

 Demand pair \langle 9, 43 \rangle
From demand pair \(\langle e, d \rangle \) we learn:

- Task can create \(e \) units of exec. demand ...
- ... during interval of size \(d \)
Demand pairs (cont.)

- From demand pair $\langle e, d \rangle$ we learn:
 - Task can create e units of exec. demand ...
 - ... during interval of size d
- Useful for the demand bound function!
Demand pairs (cont.)

- From demand pair \(\langle e, d \rangle \) we learn:
 - Task can create \(e \) units of exec. demand ...
 - ... during interval of size \(d \)

- Useful for the demand bound function!

\[
\langle 9, 43 \rangle
\]

Graph showing demand pairs with \(t \) on the x-axis and demand on the y-axis.
Demand pairs (cont.)

• From demand pair $\langle e, d \rangle$ we learn:
 • Task can create e units of exec. demand ...
 • ... during interval of size d

• Useful for the demand bound function!

Thus: Compute all demand pairs, then take "maximum"
$$dbf(i, t) = \max_{f \in \langle e, d \rangle} \text{demand pair with } d \leq t$$
Demand pairs (cont.)

- From demand pair $\langle e, d \rangle$ we learn:
 - Task can create e units of exec. demand ...
 - ... during interval of size d
- Useful for the demand bound function!
From demand pair $\langle e, d \rangle$ we learn:
- Task can create e units of exec. demand ...
- ... during interval of size d
- Useful for the demand bound function!

Thus: Compute *all demand pairs*, then take “maximum”

$$\text{dbf}(\tau_i, t) = \max \{ e \mid \langle e, d \rangle \text{ demand pair with } d \leq t \}$$
Demand pairs (cont. 2)

More formally

- Given path \(\pi = (\pi_1, \ldots, \pi_k) \)
- **Execution demand**: \(e(\pi) := \sum_{i=1}^{k} e(\pi_i) \)
- **Deadline**: \(d(\pi) := \sum_{i=1}^{k-1} p(\pi_i, \pi_{i+1}) + d(\pi_k) \)
- \(\langle e(\pi), d(\pi) \rangle \) is a demand pair for \(\pi \)
Demand pairs (cont. 2)

More formally

- Given path $\pi = (\pi_1, \ldots, \pi_k)$
- **Execution demand:** $e(\pi) := \sum_{i=1}^{k} e(\pi_i)$
- **Deadline:** $d(\pi) := \sum_{i=1}^{k-1} p(\pi_i, \pi_{i+1}) + d(\pi_k)$
- $\langle e(\pi), d(\pi) \rangle$ is a demand pair for π

How to compute all demand pairs?

- Enumerate all paths?
Demand pairs (cont. 2)

More formally

- Given path $\pi = (\pi_1, \ldots, \pi_k)$
- Execution demand: $e(\pi) := \sum_{i=1}^{k} e(\pi_i)$
- Deadline: $d(\pi) := \sum_{i=1}^{k-1} p(\pi_i, \pi_{i+1}) + d(\pi_k)$
- $\langle e(\pi), d(\pi) \rangle$ is a demand pair for π

How to compute all demand pairs?

- Enumerate all paths? Too expensive! (Exponential)
Demand pairs (cont. 2)

More formally

- Given path $\pi = (\pi_1, \ldots, \pi_k)$
- **Execution demand**: $e(\pi) := \sum_{i=1}^{k} e(\pi_i)$
- **Deadline**: $d(\pi) := \sum_{i=1}^{k-1} p(\pi_i, \pi_{i+1}) + d(\pi_k)$
- $\langle e(\pi), d(\pi) \rangle$ is a demand pair for π

How to compute all demand pairs?

- Enumerate all paths? Too expensive! (Exponential)
- Better: Iteration using abstraction
- (Remark: Demand pairs are abstractions of paths)
Demand triples

- Idea: Start with 0-paths (one vertex), extend stepwise
Demand triples

- Idea: Start with 0-paths (one vertex), extend stepwise
- We need: Abstraction which
 1. allows to *extend* paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
Demand triples

- Idea: Start with 0-paths (one vertex), extend stepwise
- We need: Abstraction which
 1. allows to *extend* paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
- Idea: *Demand triples*
 - Execution demand \(e(\pi) \)
 - Deadline \(d(\pi) \)
 - Last vertex \(\pi_k \)
Demand triples

- Idea: Start with 0-paths (one vertex), extend stepwise
- We need: Abstraction which
 1. allows to *extend* paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
- Idea: *Demand triples*
 - Execution demand $e(\pi)$
 - Deadline $d(\pi)$
 - Last vertex π_k
- Demand triple $\langle e(\pi), d(\pi), \pi_k \rangle$ is another path abstraction!

![Diagram showing paths and demand triples](image)

Path (j_4)
\[\sim \langle 5, 10, j_4 \rangle \]
Path (j_4, j_2)
\[\sim \langle 6, 28, j_2 \rangle \]
Path (j_4, j_2, j_3)
\[\sim \langle 9, 43, j_3 \rangle \]
Iterative procedure

- Create all demand triples up to bound B:
 1. Store all 0-paths, i.e., $\langle e(j), d(j), j \rangle$ for all vertices j
 2. Pick some stored unmarked demand triple $\langle e, d, j_i \rangle$, then mark it
 3. Create new demand triples:
 - For each successor vertex j_k of j_i
 - $e' = e + e(j_k)$
 - $d' = d - d(j_i) + p(j_i, j_k) + d(j_k)$
 - $\langle e', d', j_k \rangle$ is a new demand triple!
 4. Store each new $\langle e', d', j_k \rangle$ if
 - it is not stored yet, and
 - $d' \leq B$
 5. Repeat from 2 until there are no more unmarked triples

More efficient procedure than enumerating all paths!

Note: Actual paths are never stored

Optimizations: Discard non-critical triples along the way

Exercise: What’s $dbf(i, 26)$ if i is the task on previous slide?
Iterative procedure

- Create all demand triples up to bound B:
 1. Store all 0-paths, i.e., $\langle e(j), d(j), j \rangle$ for all vertices j
 2. Pick some stored unmarked demand triple $\langle e, d, j_i \rangle$, then mark it
 3. Create new demand triples:
 - For each successor vertex j_k of j_i
 - $e' = e + e(j_k)$
 - $d' = d - d(j_i) + p(j_i, j_k) + d(j_k)$
 - $\langle e', d', j_k \rangle$ is a new demand triple!
 4. Store each new $\langle e', d', j_k \rangle$ if
 - it is not stored yet, and
 - $d' \leq B$
 5. Repeat from 2 until there are no more unmarked triples

- More efficient procedure than enumerating all paths!
 - Note: Actual paths are never stored
 - Optimizations: Discard non-critical triples along the way
Iterative procedure

- Create all demand triples up to bound B:
 1. Store all 0-paths, i.e., $\langle e(j), d(j), j \rangle$ for all vertices j
 2. Pick some stored unmarked demand triple $\langle e, d, j_i \rangle$, then mark it
 3. Create new demand triples:
 - For each successor vertex j_k of j_i
 - $e' = e + e(j_k)$
 - $d' = d - d(j_i) + p(j_i, j_k) + d(j_k)$
 - $\langle e', d', j_k \rangle$ is a new demand triple!
 4. Store each new $\langle e', d', j_k \rangle$ if
 - it is not stored yet, and
 - $d' \leq B$
 5. Repeat from 2 until there are no more unmarked triples

- More **efficient** procedure than enumerating all paths!
 - Note: Actual paths are never stored
 - Optimizations: Discard non-critical triples along the way
- Exercise: What’s dbf(τ_i, 26) if τ_i is the task on previous slide?
Which \(t \) to check?

- Recall: Want to check \(\text{dbf}(\mathcal{J}, t) \leq t \) for all \(t \)
- Find a bound for \(t \) just like for sporadic tasks!

\[\forall t : \text{dbf}(\mathcal{J}, t) \leq t \]

- Derive linear bound for \(\text{dbf}(\mathcal{J}, t) \)
 - Intersection with \(t \) gives bound \(B \)
 - How to find the linear bound?
Linear bound for dbf

- Bound is based on *utilization*
 - Long-term demand “rate” (asymptotic)
 - For DRT: “most dense” cycle
 - Highest ratio execution demand (vertices) vs. duration (edges)
 - How to find this value? (Exercise!)

\[
dbf(\tau_i, t) \leq U(\tau_i) \cdot t + \sum_{k} e(j_k)
\]

- Any path can be split into vertices in cycles and not in cycles
- Leads to

- So, check dbf(\tau_i, t) for which t? (Exercise!)
DRT feasibility: Summary

- Feasibility test (or schedulability test for EDF), based on dbf
- First, compute the *utilization* for all tasks
 - Based on most dense cycles in graphs
- Derive *bound B*
- Compute $\text{dbf}(\mathcal{T}, t)$ for all $t \leq B$
 - Uses iterative procedure with *demand triples*
 - Path abstraction to reduce complexity
- If $t \leq B$ with $\text{dbf}(\mathcal{T}, t) > t$ is found, then \mathcal{T} is infeasible
- Otherwise \mathcal{T} is feasible

Read more in *The Digraph Real-Time Task Model* (Stigge et al., 2011) … or in Martin Stigge’s PhD thesis. Play with a Python implementation: libdrt
DRT feasibility: Summary

- Feasibility test (or schedulability test for EDF), based on dbf
- First, compute the utilization for all tasks
 - Based on most dense cycles in graphs
- Derive bound B
- Compute $\text{dbf}(\mathcal{T}, t)$ for all $t \leq B$
 - Uses iterative procedure with demand triples
 - Path abstraction to reduce complexity
- If $t \leq B$ with $\text{dbf}(\mathcal{T}, t) > t$ is found, then \mathcal{T} is infeasible
- Otherwise \mathcal{T} is feasible

- Read more in *The Digraph Real-Time Task Model* (Stigge et al., 2011)
- ...or in Martin Stigge’s PhD thesis
- Play with a Python implementation: libdrt
Generalize further? Timed automata!

Idea

Annotate locations on timed automata with job parameters (WCET, relative deadline) let a job be created every time such a location is visited.

Analysis is generally costly, but sometimes fast enough.