Solving the Priority Inversion Problem in legOS

Michael Haugaard Pedersen, Morten Klitgaard Christiansen & Thomas Glaesner
Computer Science
University of Aalborg
{willow, kc, glaesnef@cs.auc.dk
http://www.cs.auc.dk/"willow/legOS

22nd May 2000

Abstract A real-time operating system can be characterized
by the following requirements [Stallings, 1998]:

legOS is currently the most powerful development
tool available for the LEG@ Mindstorm&' RCX
unit. Besides being a powerful development toole Responsiveness
it also comes close to being a full scale operat-
ing system that supports prioritized threads, syn-
chronization with semaphores and multitasking. le- ¢ Fail-soft operation

gOS however suffers from some serious problems

with respect to being a real-time operating system, ® User control

and one of these problems is the problem of pri-

ority inversion. The actual existence of the priorfFirst of all the operating system has to behave in
ity inversion problem in the legOS operating systefhdeterministic way. For instance a higher priority
is illustrated through a test case and as a solutiogprocess is always expected to finish before a lower
we have implemented the Priority Ceiling Protopriority process, if these do not share any resource.
col. Besides preventing priority inversion, the Pri-
ority Ceiling Protocol also prevents deadlock anﬂ_I

chained blocking, and the correctness of the impIWe responistl)\lle?ess TquU|{ertr;]enf/\;[e:Ist us, tha:jt 'T 'S alf-
mentation is therefore documented through vario ays possible o calculate the worst case defay o

S . . .
tests cases, illustrating how priority inversion, deagbe execution of the higher priority process.

lock and chained blocking are prevented. The reliability issue is very important when work-
ing with real-time operating systems. A failure in a
real-time operating system can have serious conse-
. guences for the users of the systems. For instance
1 Introduction failure in a real-time system controlling traffic lights
could cause car crashes and in some situations in-

e Determinism

o Reliability

these two processes do in fact share a resource,

In real-time systems the correctness of the systerd4ges and death.

not only dependent on the logical result of a coniy;i_got of operation secures that the system does
putation as in conventional systems, but also on thg; st crash at the moment it experiences a serious
time at which results are produced. Therefore a re%‘r‘ror. The fail-soft mechanism sees to, that the sys-

time operating system should guarantee, that whepg, can continue running with as much capability as
high priority process or task arrives at the task maBbssibIe.

ager, it should be processed and executed as fast as

possible. It should not be possible for an indepeht real-time operating systems users have a more
dent lower priority process to preempt or cause afipe grained control of both the task manager and

delay in the execution of the higher priority processhe priority of processes. Thus user control is the fi-

With independent we mean that the two processeal point we expect a real-time operating system to
do not share any resource. fulfill.

Examples of current applications of real-time sysndlegOS have been made available for the public.

tems include control of laboratory experiments, pro- ,
cess control plants, robotics, air traffic contro/e9OSis actually not only the most powerful de-

telecommunications, and military command an¢flopment tool available but also an open-source
control systems, basically systems that are dep&fiPedded operating system for the RCX. It is a

dent on the time at which results are produced. replacement firmware that completely replaces the
default RCX firmware delivered with the standard

When working with real-time operating systems itEGO® Mindstorni* packet.legOSoffers program

is in fact possible for a higher priority process to beevelopers the ability to develop programs to run on
blocked by lower priority processes. This can othe RCX in assembly language, C, or C++. With
cur if the higher priority process is waiting for a relegOSthe developer has direct control of a wide
source (guarded by a mutex lock or a semaphorayriety of sensors and output devices such as, dis-
that a lower priority process already possesses (day, IR port, motor(s) and the memory of the RCX
locks). As long as the resource is locked it is posgKnudsen, 1999].

ble for lower priority processes to indirectly preempt

the higher priority process, thus postponing the exE€ 169OS operating system supports prioritized
cution of it. multitasking, the ability to work with processes

and the ability of processes to synchronize through
As a real life example of the priority inversion probsemaphores. When all this is sa@dOSis far from
lem we refer to the problems NASA experiencebeing a real operating system especially when look-
during the Mars Pathfinder mission. To keep it sharig at it from a real-time perspectit:eFor instance,
the Pathfinder spacecraft experienced the priority iimterrupts are only used by the operating system to
version problem simply because the componentsinErement the system timer, one time per millisec-
the spacecraft were using a common resource @md and after about 20 milliseconds a task shift
information bus) to communicate with each othas initiated. The only time, the operating system
and access to the information bus was synchronizeftecks whether a process that is waiting for an event
through the use of mutex locks. For more informdi.e. a sensor reading) can continue to run, is when
tion we refer to the web-page describing "What haja-task shift is initiated. Thus, the value of the sen-
pened on Mars?, sor could have changed many times in between the

task shift. If instead interrupts had been used to di-

Itis the intention of this paper to documentourwor];ecﬂy signal waiting processes fewer sensor read-
in making legOS more more deterministic. By d%hgs would be logt

terministic we mean that the worst case running time

of a process from start to finish can be calculatdthe above mentioned problem is not the only prob-

prior to execution and regardless of the lower priem with legOSand we will throughout this pa-

ority processes in the system. Also by preventinger point out several more weaknesselegOS le-

deadlock and chained blocking the operating systeg@Swas conceived by Markus L. Noga in October

should be more responsive. 1998, who still remains the driving force behind the
project [Noga, 1999].

- 2
2 Whatis legOS? 3 The Priority Inversion Prob-

In 1998 LEGC® released the Mindstorritsrobot lem in IegOS

development k& containing the RCX, a pro-

grammable 16MHz Hitachi H8 micro-controllerpyiority inversion is when a higher priority pro-
The RCX firmware, which is supplied with thecess is blocked by one or more lower priority pro-
RCX makes it possible for developers to pracesses. This can occur when a resource is shared
gram the RCX in RCX code, a very simple and
limited development tool. After the release of htp:/iwww.noga.deflegos

. . 4Actually it has probably never been the intension that the
M -
LEGO® Mindstorms" several independent devellegOSoperating system should be a real-time operating system,

opment tools for the RCX such &QC, pbFORTH put never the less we will still try to look at it with real-time

glasses.
http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html 5A solution to this problem can be found in
2http://www.mindstorms.com [Pedersen et al., 2000]

between processes of different priorities and accasdinished at timd4. HereP; can leave its critical
to the resource is synchronized by mutex locks ocggion and release its lock dhy. Finally, at timets
semaphores. P; can lockM1 and enter its critical region.

To show that the priority inversion problem truly ext is important to notice that betweénandts P; ex-

ist in the legOSoperating systefhwe present the periences priority inversion, and had it been the case
following test case. The test case consists oftlaat other processes with priority between "1” and
LEGO® car controlled by three processasP, and "3” had been initialized in this period, for example
Ps, where 1, 2 and 3 denotes the priority of the prdf severalP, processes had been initialized, tHen
cesse§ The processes have the following behavievould have been blocked until these too were fin-
and relations: ished. Actually the worst case scenario is that this

could result inP; being blocked forever.
Processes:

In practice the car starts by driving forward and

o P; Stop the engine. therel:_)y locking thg engine resource. Shortly qfter

the drive process will be preempted by the front light

process. When the front light process has finished

¢ P, Blinking front light, which can be triggeredrunning, the drive process will continue unless the

by a touch-sensor. front light process has been triggered again while
running, then it will continue blinking. Only when

_ . .. both the drive and the front light processes have run

e Py Drive (start engine, set speed, set directiqg compjetion, the stop process is able to start and

(fwd)). thereby stop the engine. Clearly it is not acceptable
that the stop process is postponed because the car
has to blink.

Relations:

As a solution to this problem we will implement the
Priority Ceiling Protocol inlegOS which reduces
the worst case blocking time of a process (by lower
priority processes) to at most the duration of the exe-
Figure 1 describes how the test case evolves oweition of a single critical region of one lower priority
time. process [Sha et al., 1990].

e P; andP; share theengineresource.

A7) Critical region guarded by M ;

P __mr+— 4 The Priority Ceiling Protocol

P2 ! — ! The goal of the Priority Ceiling Protocol is to solve

the priority inversion problem as well as preventing

P A | f/ | . : .
r g" P L2 E the formation of deadlock and chained blocking.
to t, t, tg ty tg tg

The idea is that all mutexes are assigned a "ceiling
Figure 1:P5; experiences priority inversion priority”, which is equal to the priority of the high-

est priority process that can lock the mutex. When

a proces®;, as the only one, locks a mutex it runs

]]]) with its own priority, and can be preempted as nor-
As the figure show®) is started at timéy. Attime 41 In order for a higher priority proce8sto lock

t1 P, is started and preem®s. Next,Ps is started at 5 mutex,P, has to have a priority higher than the

timety, butitis suspended at timig, where it needs gjjing priority of any of the already locked mutexes
to lockM1. ThenP, continues and blockg; until it (if no other mutexes are locked, thénis allowed

8n the rest of the paper we will refer to thegOSoperating to lock the mutex regardless of its priority). When
system as jusegOS P has a higher priority, it means thgtis not going

“In legOSthe priority of a process can be any number from ;
to 20, where 20 is the highest priority and 0 is the priority of thgO use the same resource as the B[‘IB currently

idle process. This priority numbering will be used throughout tHé_Sing: SOP, can preempp; : _If R (?IO?S not haye a
paper. higher priority than the ceiling priority, theR; in-

3

4.3 Preventing Deadlock

herits the priority ofR}, which becomes blocked andhe mutex guarding andP; locks the one guarding

P; continues running. This approach ensures that Then deadlock occursi needsA while usingB
when a procesB preempts a proce$ that is run- andP needsB while usingA, because the processes
ning in its critical region, and then enters its owthen will be blocked waiting for each other to re-
critical region, then proces% is guaranteed to havelease its resource. As mentioned above, deadlock is
a higher priority than all of the preempted processpsevented by the Priority Ceiling Protocol, but how
[Sha et al., 1990], [Jensen, 1999]. does it prevent it?

4.1 Preventing Priority Inversion 4.3 Preventing Deadlock

We will now, using the test case presented in sectidvhen a proces®; tries to lock a muteMs, and
3, illustrate how priority inversion is prevented witha proces$? is running in its critical region having
the Priority Ceiling Protocol. Recall that: locked the mutem, then a check is made to see if
Pj has a higher priority than the ceiling priority of
e P, andP; share thengineresource guarded byall locked mutexes. If this is the case thiénlocks

the mutexM1, giving M1 the ceiling priority 3. M1 and preempt®. If not thenP; is not allowed
to lock the mutexM4, andPR inherits the priority of

e P2 uses no shared resources. Pj andP; is suspended. By blocking; outside its
critical region a possible deadlock has been avoided.

Figure 2 depicts how the processes in the test case i h hich sh h
evolves over time. Figure 3 illustrates the test case, which shows the

prevention of a possible deadlock. The test case

; consists of the following processes and mutexes.
/W7 Critical region guarded by M, gp

P D % Processes:
P, | — — e P53 Blinking light

i o o e P, Drive forward at slow speed, then speeding
Po o M— —L up and down and stop.

t‘0 t‘1 t‘2 t‘3 I:‘4 t‘5 fG

e P; Drive fast backwards, then slowing down,

Figure 2: Preventing priority inversion speeding up and stop.
Mutexes:

If we compare the two situations by looking at figure

1and 2, the difference is that at tiiewhenPs tries o M5 is the mutex guarding thglink resource.

to lock the mutexv1 guarding theengineresource,

P; becomes suspended aRdinheritsPs's priority e My is guarding theslow speedesource.

("3"). Py then runs to the end of its critical region,

and when it releases tlemgineresource at timg, it

obtains its original priority "1".P; can now lockM4

and enter its critical region. At timig whenPs fin- Relations:

ishes, that is stopping the engifi®,has the highest

priority and completes its computation. Finallyt@t ¢ processe®; and P, share the two resources

Py can run to the end. guarded by mutek; andM.

e Mj is guarding thdast speedesource.

e Procesd; needs a resource guarded by mutex
4.2 Deadlock Ms.

Deadlock can occur when two proces&sindP; At time t, process; tries to lockMy, but since the
share two resourcesandB. If for instanceP, locks ceiling priority of the locked mutei; is not lower

4

4.5 Preventing Chained Blocking

P#7) Critical region guarded by M /7 Critical region guarded by M ;

RWRY| Critical region guarded by M ,,

P P —)

t t oty ty ty ts tg trtg to

ty 4 thty ts gty

Figure 3: Preventing deadlock

Figure 4:Ps is blocked for the duration of the critical
region computation oP; andP,

than the priority ofP, thenP, is blocked outside its

critical region, andP; inherits the priority of?, and

continues running in its critical region. At tintgPs)))

preemptsP; and enters its critical region at timg 4.5 Preventing Chained Blocking

because it has a higher priority than the ceiling prior-

ity of M1. Attimets, Ps finishes andP; wants to lock

M. SinceP; is running in its critical region antfl, The prevention of chained blocking is solved by the
is not already locked?; is granted the lock oM,. ceiling priority and by priority inheritance. So by
Next, everything runs to completion and the possiblsing both of these properties a higher priority pro-
deadlock, which could have occurred approximatedgss will never be blocked for more than the duration
at timets, if P, had been allowed to lodW, at time of one critical region computation of a lower prior-
tp, has been avoided. ity process. An example of this is shown in figure

5.
In practice the car starts by driving fast backwards
and is then preempted by the blinking process and
it will remain at the current speed for as long as the

blinking process runs plus the rest of the time the 7Kk Critical region guarded by M ,
fast backwards process was set to run. Then the car - _
decreases and increases the speed one more time, af- \M Critical region guarded by M ,

ter which it changes direction driving slow forward,
speeds up and down and stops. Without the Priority;
Ceiling Protocol the car would have deadlocked in
the situation where it drives fast forward and nevery,
stop (at some point it would probably crash!). 2

Py

4.4 Chained Blocking Figure 5:Ps is only blocked for the duration of the
' critical region computation d®,

Chained blocking is when a higher priority process
is blocked for the duration of the critical region of

several lower priority processes. An example of this ,
problem is shown on figure 4. As it showsP, can not lockM;, because it has a

lower priority than the ceiling priority oM, and
As the figure showss is blocked for the duration thereforePs is blocked for the duration of the crit-
of the critical region of botliP; andP,, which is be- ical region computation of only one lower priority
tweentz andts. process, in this cadg.

5.2 Task Scheduling

5 The legOS Operating System be in a state of sleeping, running or waiting for an
event. The processes are connected to each other by
the pointersiextandprevious(visualized in figure 6

Inr this sectlorn wte :N'g ?'Vggnn%uimvilm gosw th y nandp), also each process in the chain contains a
processes are stored leglusa owlegi>go pointerpriority (visualized in figure 6 aprio). This

about getting the the right process to run, sleep or. X dwh th iority level of
wait for an event. It is important to understand hoﬁomt?r IS used whenever the prionity level of a pro-
: ess is needed.

legOShandles the process management in order 19

understand the design and implementation of thetially, before any user program is started the op-

Priority Ceiling Protocol. erating system will only contain two processes, one
with priority zero and one with priority 20. The zero
priority process is used to make the RCX unit go

5.1 Organization of the Processes into sleep mode when not used, and the 20 priority
process is used to receive data from the IR-tower.

Figure 6 shows how the processes are organized\is0, this is the place wheldegOSchecks whether

legOSand some of the attributes in both the proce#e start program button or the power off button has

and priority level structure. The boxes represent pReen pushed. Since the priority level of processes

ority levels, which are grouped together to form a@re created whiléeegOSis running,legOScan itself

ordered prioritized chain, where 20 is the highegtn out of memory. ThusegOSdoes not satisfy the

priority and zero is the lowest priority. Each priIhe reliability requirement stated in section 1.

ority level contains a pointerpid to a chain of one

or more processes (a process is visualized by a cir-

cle). The process pointed to bpidis the process in

the process chain that is currently executing or hBs2 Task Scheduling

been executed most recently. A priority level will

always contain at least one task otherwise it will b]ehe task manager uses the above mentioned data
non-existing. To access the priority chain, a pointe 9

. .) . L s{ructure to find out which process is the next to run
priority_head which points to the h'gh?St pnor.'tyéin legOSa process that ispready to run is marked
r

as sleeping). Basically, what the task manager does
is to traverse the process chains in a round-robin
fashion starting at the process chain located at the
highest priority level searching for a process ready

— to run. This procedure is repeated every time a task
shift is initiated.

prev (in the figure visualized ap) to the previous
priority level and a pointenext(in the figure visual-
ized ax) to the next priority level.

Prio
a1 DALY /
Prio0 Prio3 Prio 20 .
et S ealads 5.3 Event Handling
Prio cpid Prip oPid prig cpid

\ Finally, we will just mention howegOSdeals with
p @ e events. If the task manager, while looking for a pro-
g Ao cess to run, finds a process that is waiting for an
n Py) event, the task manager will test if this event have
occurred by running a special wake up function.
This function is defined inside the user program and
takes one argument. In order for the task manager
to be able to get hold of the wake up function and
its argument, both the argument and the address of
Figure 6: The organization of processessigOS the function is stored as attributes in the process data
structure. If the event has occurred the task manager
will execute the process right away, otherwise it will
The process chain pointed to at each priority levielok for another process leaving the state of the pro-
is a chained list of processes. A process can eitleess unchanged.

6.1 Priority Inheritance

6 Design & Implementation the priority of Az to the same priority aB7 until A
released/.

In this section we will explain how we have de- N N N

signed and implemented the Priority Ceiling Proto@—z Tows [Toes [Towr O

col in legOS The design and implementation hav S S e e e S g

been divided into two parts - one part dealing with Prio cpid prig cpid

priority inheritance of processes and a second part \

dealing with deadlocks and chained blocking. This p @ P e
section also contains a description of a memory fault

we have encountered during our work widlgOS " "

Note that sincéegOSdoes not directly support mu- “

texes, we have implemented mutex facilities ac- UL SO D
cording to the POSIX standard [Butenhof, 1997]. Prio5 Prio 7 ?
The implementation of the mutex facilities and the PY T P g e
Priority Ceiling Protocol can be found in the files Prio. <t o P
pthread.handpthread.c The following procedures e G

and functions have been implemented: ?

n

int pthread mutexinit(pthread mutext *,
const pthreadmutexattrt *),
int pthreadmutexlock(pthreadmutext *),

n
n
n

p

int pthreadmutexunlock(pthreadmutext *), ()

int pthread mutextrylock(pthreadmutext *),

wakeupt pthreadmutexeventwait(wakeupt), Figure 7: (a) Before boosting the priority of process

int pthreadmutexsetprioceiling(pthreadnutext *, As to priority level "7”. (b) After the procesfg has
int, int *), been boosted to run at priority "7”

int pthreadmutexdestroy(pthreadnutext *),

void boostpprio(pthreadmutext *, pdatat *),

void deboospprio(pthreadmutext *, pdatat*), The part of boosting the priority of a processlén

void addto_mutexlist(pthreadmutext *) and gOSboils down to moving the process from its orig-
void removefrommutexlist(pthreadmutext *). inal priority level to the new priority level. If the
process is the only process at its original priority
level we just remove the priority level and then cre-
Yte it again when the process releases the mutex.

pthreadmutexeventwait(wakeupt)) are imple- Figure 7(b) shows the data structure of the task man-

mented according to the POSIX standard. The r%‘serﬁielﬁigasozesfg dzc;orsé?:a;oegrlﬁztﬁﬁg ti\e.
are procedures that are called within the POSI / 3

standard functions. Finally, it should be noted th {ocess W.'" be mov_ed back to its or|g|r_|a| priority
, evel and in case this level does not exist we have
the mutexes, as currently implemented, can only be
used when a ceiling priority is given.

The interface of all the functions startin
with pthreadmutex (except for the function

O create it again. In order to be able to recreate
the original priority level we store the original prior-
ity of the process in an extra attribute at the time of
..) process creation. Also, when a process locks a mu-
6.1 Priority Inheritance tex we need to store a pointer to the process lock-
ing the mutex (the owner) in the mutex structure.
The first thing we have to take into account is hoBy doing this we achieve that when a higher prior-
to boost the priority of a process if this process h@ty process needs to lock an already locked mutex
locked a mutex which is needed by a higher priorithhe owner can easily be found and (maybe) boosted.
process. Consider figure 7(a); let procéssun in- This is also here the main difference between mu-
side its critical region, which is guarded by a mutetexes and semaphores shows. It would not be pos-
M. Then imagine that proce§s needdV in order sible to implement the Priority Ceiling Protocol on
to finish execution. What we want to do is to boost semaphore object since a semaphore object does

6.2 Preventing Deadlock and Chained Blocking

not contain any information about the owner. Toomparing the original priority with the current
even talk about an owner of a semaphore object dgeority level that the process is in. If these to
not make sense, since semaphores do not necedsaels are the same we know that the process
ily need to be released (or decreased) by the sahes not been boosted. To restore a process to its
process. original priority level we have used the function
. . o deboostpprio(pthreadmutext *, pdatat *). This

The possibility of boosting the priority of ag,nction have the following behavior. First, it needs
process takes place at the moment a Prgy check whether the original priority level stil
cess tries to lock an already locked mute%yists If not, a new level is created by using the
Thus, we have implemented the boosting Qfiginal priority attribute and added to the priority

a process inpthreadmutexlock(pthreadmutext cpain. Then the process needs to be moved back to
¥). This method takes a pointer t0 @& MUgs griginal level and all pointers should be restored
tex object or structure as argument and te§{$ their respective targets. The flow diagram in
if the mutex is not already locked by UStig e gillustrates the general idea of the design and

ing pthreadmutextrylock(pthreadmutext *). I 0 jmplementation of the unlocking function.
the mutex is already locked the priority of the

owner will be boosted by executing the method Mutex
boostpprio(pthreadmutext *, pdatat *). After

this we can only wait for the owner to release
the mutex, this is done by the wait event func-
tion wait event(pthreadnutexeventwait, pdatat

*), which takes as argument a wake up function and
its argument (the reason why the wakeup function
takes as argument a process and not a mutex, will
be explained later). If the mutex is not locked, a
process is granted a lock on it right away. After the
mutex has been locked we just need to set the new
owner of the mutex. Figure 8 shows a flow diagram
for the locking function. !

Move the process
back to its original
priority level

Mutex

of the owner highel
than the priority of the
process that is trying

e

6.2 Preventing Deadlock and Chained

Suspend until the BIOCkIng
mutex is released
* locking the mut R .
cess that wants to lock a mutex to the highest ceiling
priority of all of the already locked mutexes. The
. process is only granted a lock if none of the locked
Suspend until the
mutex is released mutexes have a higher ceiling priority than the pri-

Boost the priority S i As you mightrecall to prevent deadlock and chained
! of the process . blocking we need to compare the priority of a pro-

ority of the process. Thus, the locking function has
now been extended to first of all check for this sit-
Figure 8: Flow diagram for the locking function uation before we allow a lock on the mutex. To be

able to make this comparison we need to have an

ordered list of all locked mutexes and an entry to
A mutex is unlocked wusing the functionthe list pointing to the mutex with the highest ceil-
pthreadmutexunlock(pthreadmutext *). Thus, if ing priority. If the process is not granted a lock
the process that is unlocking the mutex has beirwill be suspended until it has a higher priority
boosted, we need to restore it to its original prioritghan the ceiling priority of any of the locked mu-

We can check if a process has been boosted texes. Thus we need to extend the wake up function,

,,,,,,,,,,,,,,,,,,,,,,

8

6.3 Memory Fault

pthreadmutexeventwait(pdatat *) to perform this
check. The task manager can now use it to decide
whether a process should wake up or continue to be
suspended.

We need to consider just one more thing before we
are finished withpthreadmutexeventwait(pdatat

*). Consider the scenario depicted in figure 10; at
timet; a process running at priority level one locks
the mutexM; and at time; the process also acquires
a lock on mutexM,. At time tg the priority of the
process is boosted to a higher priority level and at
timet, the process releaskf again.

i i ! Release! 7 Relesse
Prio2 — | Mk - -- - D}

| | 17

' Lock ' Lock | Release
Prio 1 —/777 === M-

ty to 3 19}

Figure 10: Boosting problem

The question is now, at what priority level should
the process continue its execution in? Of course

Process P

Arethere
any locked
mutexes?

higher than any
of the locked mutexes
ceiling priority?

we would not allow the process to continue runnin

with the boosted priority, if the reason for boost-| Yiththehighest ceiling priority,
where the owners priority isitself

smaller than the priority of P

ing the process was that the higher priority proce
just needed to locM;. If we allow this we would

Find the owner of the mutex

If no process
isfound

just face a new situation of priority inversion - the
mere problem we where trying to solve! The way
we have solved this problem, is to deboost every
time a mutex is unlocked, unless the unlocking pro-
cess has not been boosted at all. When we deboost
every time a process unlocks a mutex, we need to
boost it again if it still locks a mutex needed by a
higher priority process. Thus we need to extend the
wake up functiorpthreadmutexeventwait(pdatat

*) again, so that this function can also boost the

priority of a process. The flow diagram showff'gure

If aprocess
isfound

Boost the priority of
this owner to the
priority of P

Do not wake up P

11: The extended

on figure 11 illustrates the extended version Gthreadmutexeventwait(pdatat *)

pthreadmutexeventwait(pdatat *).

6.3 Memory Fault

Throughout the implementation and testing of the
Priority Ceiling Protocol we encountered some in-

ternal RCX memory faults. These problems ap-

peared when a program was allocating memory to a
new priority level using the functiomalloc(sizet).

Wake up P

Do not wake up P

version of

As discussed in theegOSgroup at LUGNét it has
been found that memory addresses from 0xfb80 to
0xfd7f in the RCX is not writable, or more exactly,
data "stored” in this address space is always read as
Oxff. Although, this bug has been fixed in later ver-
sions of legOSs, it is still not known whether other
"bad” regions in the memory exists. Our way of fix-
ing this problem was to download our programs to
the second program region (as program number 1)
of the RCX, and by doing this avoiding the "bad”
memory regions present in the first program region
(program number 0). This apparently fixed our

memory problem, but a complete check for "badfable 1: Time used to execute test case with boost-

regions in the RCX is recommended to completelfg
avoid any further memory problems.

7 Testing the Implementation

In order to see how expensive the implementation
is with respect to time, we have compared the exe-
cution time of two test cases by first running them

using mutexes and secondly running them using
semaphores, that is without the Priority Ceiling Pro-

tocol. As the first test case we have chosen the test
case described in section 3 and illustrated in figure
1 and 2 and as the second test case we have

Execution time using mutexes

Difference [msec]

Average [msec]

114660
114650
114420

114567

Execution time using semaphores

Difference [msec]

Average [msec]

114200
114280
114220

114227

Execution time using mutexes

Difference [msec]

Average [msec]

114240
114110
114020

114123

Execution time using semaphores

Difference [msec]

Average [msec]

114020
114080
114040

114047

a slightly modified version where the locking Ordeﬁoosting

ensures that no processes are boosted.

u?§61|e 2: Time used to execute test case without

The tests has been performed by running the respec-

tive test cases five consecutive times registering thé,_through. From these test results we can see that

start and finish time of the entire run-through. ke phoosting part takes approximately 53 millisec-
should be noted that we have not been able to use s

system time to measure the difference since this is

based on interrupts, and in order to avoid task shifts,

when the mutex facilities are used, interrupts are dig- .
abled while executing the lock and unlockfunctioné Conclusion
As a result time has been measured by hand (with a

stop watch). The results after_three test runs of the o, though the implementation of the Priority
original test case are shown in table 1 and the "8ziling Protocol does in fact make thegyOSoperat-

sults after three test runs of the modified test cagy system more deterministic and responsive there
are shown in table 2. is still room for improvements. As you will see in

As table 1 shows there is a difference between (RECtion 9, priority inversion still occur in the form of
ing mutexes and semaphores of approximately 398/ling blocking.

milliseconds, which yields an average of 68 mily5 eq0sstill does not support interrupts for any-
liseconds per run-through. Table 2 shows that tlﬂ‘ﬁng else than the system clock, which means that

difference between using mutexes and semaphoggsarna| devices can not signal waiting processes di-

when omitting boosting is only about 76 miIIisec—reC“y, and the operating system then has to poll spe-

onds, which yields an average of 15 milliseconds pgly| registers in order to register signals (i.e. in-

terrupts) from external devices. Because of this
polling scheme théegOSoperating system is still

8LEGO® User Group Network,
http://www.lugnet.com/robotics/rcx/legos/

10

REFERENCES

not as responsive as real-time developers could haveand understandPhD thesis, Aalborg University.
whished for (i.e. interrups can get lost due to the fact Unpublished Ph.D. Thesis Submitted to Institute
that new interrupts overwrites older interrupts). for Computer Science.

On the basis of our work witegOSwe must con- [Knudsen, 1999] Knudsen, J. B. (1999he Unof-
clude thatlegOSis far from being a real-time op- ficial Guide to Lego Mindstorms RoboBeijing-
erating system. Even though the implementation of Farnham : O'Reilly.

the Priority Ceiling Protocol has made the operat- o

ing system more deterministic and responsive it stf\092, 1999] Noga, M. L. (1999). Designing the
needs a lot of work before it satisfies all the require- '€90S multitasking operating systerr. Doob's
ments for a real-time operating system as stated inJournal

the introduction. [Pedersen et al., 2000] Pedersen, S. T., Chris-
tensen, L., and Rasmussen, E. B. (2000).
Prioritized interrupts in legos. Unpublished

Project Paper Submitted to Institute for Com-

puter Science at Aalborg University.

With respect to the implementation, the test results
shows that there is only little overhead when using
mutexes as opposed to using semaphores. Most o
the overhead is probably due to the priority boosting

of processes. [Shaetal., 1990] Sha, L., Rajkumar, R., and
Lehoczky, J. P. (1990). Priority inheritance proto-
cols: An approach to real-time stynchronization.

9 Future Work IEEE Transactions on Computer89(9):1175—
1185.

The Priority Ceiling Protocol is an effective real{Stallings, 1998] Stallings, W. (1998). Operat-
time protocol, but there is still room for improve- ing Systems: internals and design principles
ments. Even though the protocol prevents priority Prentice-Hall, Inc., 3rd edition.

inversion and deadlock, it introduces a new kind of

priority inversion, called ceiling blocking, where a

higher priority process is blocked by a lower prior-

ity process, even though the low priority process is

not going to use the same resource as the high prior-

ity process.

Also, as mentioned in section 6, the mutex facilities
have only been implemented to support the Prior-
ity Ceiling Protocol. As the system is working now
users can not use mutexes without also using the Pri-
ority Ceiling Protocol. Thus, in order to make the
system more flexible, the users have to be able to use
the mutexes without the ceiling priority and thereby
not using the Priority Ceiling Protocol. Also, some
people would say that deadlock is a feature rather
than a problem, and in order to please those people
the Priority Inheritance Protocol should also be im-
plemented ilegOSas a stand alone option.

References

[Butenhof, 1997] Butenhof, D. R. (1997).Pro-
gramming with POSIX Threads Addison-
Wesley.

[Jensen, 1999] Jensen, P. K. (199Rkliable Real-
Time Applications, and how to use tests to model

11

