
Solving the Priority Inversion Problem in legOS

Michael Haugaard Pedersen, Morten Klitgaard Christiansen & Thomas Glæsner
Computer Science

University of Aalborg
fwillow, kc, glaesnerg@cs.auc.dk

http://www.cs.auc.dk/˜willow/legOS

22nd May 2000

Abstract

legOS is currently the most powerful development
tool available for the LEGOr MindstormsTM RCX
unit. Besides being a powerful development tool
it also comes close to being a full scale operat-
ing system that supports prioritized threads, syn-
chronization with semaphores and multitasking. le-
gOS however suffers from some serious problems
with respect to being a real-time operating system,
and one of these problems is the problem of pri-
ority inversion. The actual existence of the prior-
ity inversion problem in the legOS operating system
is illustrated through a test case and as a solution
we have implemented the Priority Ceiling Proto-
col. Besides preventing priority inversion, the Pri-
ority Ceiling Protocol also prevents deadlock and
chained blocking, and the correctness of the imple-
mentation is therefore documented through various
tests cases, illustrating how priority inversion, dead-
lock and chained blocking are prevented.

1 Introduction

In real-time systems the correctness of the system is
not only dependent on the logical result of a com-
putation as in conventional systems, but also on the
time at which results are produced. Therefore a real-
time operating system should guarantee, that when a
high priority process or task arrives at the task man-
ager, it should be processed and executed as fast as
possible. It should not be possible for an indepen-
dent lower priority process to preempt or cause any
delay in the execution of the higher priority process.
With independent we mean that the two processes
do not share any resource.

A real-time operating system can be characterized
by the following requirements [Stallings, 1998]:

� Determinism

� Responsiveness

� Reliability

� Fail-soft operation

� User control

First of all the operating system has to behave in
a deterministic way. For instance a higher priority
process is always expected to finish before a lower
priority process, if these do not share any resource.

If these two processes do in fact share a resource,
the responsiveness requirement tells us, that it is al-
ways possible to calculate the worst case delay of
the execution of the higher priority process.

The reliability issue is very important when work-
ing with real-time operating systems. A failure in a
real-time operating system can have serious conse-
quences for the users of the systems. For instance
failure in a real-time system controlling traffic lights
could cause car crashes and in some situations in-
juries and death.

Fail-soft of operation secures that the system does
not just crash at the moment it experiences a serious
error. The fail-soft mechanism sees to, that the sys-
tem can continue running with as much capability as
possible.

In real-time operating systems users have a more
fine grained control of both the task manager and
the priority of processes. Thus user control is the fi-
nal point we expect a real-time operating system to
fulfill.

1



Examples of current applications of real-time sys-
tems include control of laboratory experiments, pro-
cess control plants, robotics, air traffic control,
telecommunications, and military command and
control systems, basically systems that are depen-
dent on the time at which results are produced.

When working with real-time operating systems it
is in fact possible for a higher priority process to be
blocked by lower priority processes. This can oc-
cur if the higher priority process is waiting for a re-
source (guarded by a mutex lock or a semaphore)
that a lower priority process already possesses (or
locks). As long as the resource is locked it is possi-
ble for lower priority processes to indirectly preempt
the higher priority process, thus postponing the exe-
cution of it.

As a real life example of the priority inversion prob-
lem we refer to the problems NASA experienced
during the Mars Pathfinder mission. To keep it short
the Pathfinder spacecraft experienced the priority in-
version problem simply because the components of
the spacecraft were using a common resource (an
information bus) to communicate with each other
and access to the information bus was synchronized
through the use of mutex locks. For more informa-
tion we refer to the web-page describing ”What hap-
pened on Mars?”1.

It is the intention of this paper to document our work
in making legOS more more deterministic. By de-
terministic we mean that the worst case running time
of a process from start to finish can be calculated
prior to execution and regardless of the lower pri-
ority processes in the system. Also by preventing
deadlock and chained blocking the operating system
should be more responsive.

2 What is legOS?

In 1998 LEGOr released the MindstormsTM robot
development kit2 containing the RCX, a pro-
grammable 16MHz Hitachi H8 micro-controller.
The RCX firmware, which is supplied with the
RCX makes it possible for developers to pro-
gram the RCX in RCX code, a very simple and
limited development tool. After the release of
LEGOr MindstormsTM several independent devel-
opment tools for the RCX such asNQC, pbFORTH

1http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html
2http://www.mindstorms.com

andlegOS3 have been made available for the public.

legOS is actually not only the most powerful de-
velopment tool available but also an open-source
embedded operating system for the RCX. It is a
replacement firmware that completely replaces the
default RCX firmware delivered with the standard
LEGOrMindstormTM packet.legOSoffers program
developers the ability to develop programs to run on
the RCX in assembly language, C, or C++. With
legOS the developer has direct control of a wide
variety of sensors and output devices such as, dis-
play, IR port, motor(s) and the memory of the RCX
[Knudsen, 1999].

The legOS operating system supports prioritized
multitasking, the ability to work with processes
and the ability of processes to synchronize through
semaphores. When all this is saidlegOSis far from
being a real operating system especially when look-
ing at it from a real-time perspective4. For instance,
interrupts are only used by the operating system to
increment the system timer, one time per millisec-
ond and after about 20 milliseconds a task shift
is initiated. The only time, the operating system
checks whether a process that is waiting for an event
(i.e. a sensor reading) can continue to run, is when
a task shift is initiated. Thus, the value of the sen-
sor could have changed many times in between the
task shift. If instead interrupts had been used to di-
rectly signal waiting processes fewer sensor read-
ings would be lost5.

The above mentioned problem is not the only prob-
lem with legOS and we will throughout this pa-
per point out several more weaknesses inlegOS. le-
gOSwas conceived by Markus L. Noga in October
1998, who still remains the driving force behind the
project [Noga, 1999].

3 The Priority Inversion Prob-
lem in legOS

Priority inversion is when a higher priority pro-
cess is blocked by one or more lower priority pro-
cesses. This can occur when a resource is shared

3http://www.noga.de/legOS
4Actually it has probably never been the intension that the

legOSoperating system should be a real-time operating system,
but never the less we will still try to look at it with real-time
glasses.

5A solution to this problem can be found in
[Pedersen et al., 2000]

2



between processes of different priorities and access
to the resource is synchronized by mutex locks or
semaphores.

To show that the priority inversion problem truly ex-
ist in the legOSoperating system6 we present the
following test case. The test case consists of a
LEGOr car controlled by three processesP1, P2 and
P3, where 1, 2 and 3 denotes the priority of the pro-
cesses7. The processes have the following behavior
and relations:

Processes:

� P3 Stop the engine.

� P2 Blinking front light, which can be triggered
by a touch-sensor.

� P1 Drive (start engine, set speed, set direction
(fwd)).

Relations:

� P1 andP3 share theengineresource.

Figure 1 describes how the test case evolves over
time.

t0

P2

t3t2t1

P1

P3

t4 t5 t6

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Critical region guarded by M 1M

M M

M

1

1 1

1

Figure 1:P3 experiences priority inversion

As the figure showsP1 is started at timet0. At time
t1 P2 is started and preemptsP1. Next,P3 is started at
time t2, but it is suspended at timet3, where it needs
to lockM1. ThenP2 continues and blocksP1 until it

6In the rest of the paper we will refer to thelegOSoperating
system as justlegOS.

7In legOSthe priority of a process can be any number from 0
to 20, where 20 is the highest priority and 0 is the priority of the
idle process. This priority numbering will be used throughout the
paper.

is finished at timet4. HereP1 can leave its critical
region and release its lock onM1. Finally, at timet5
P3 can lockM1 and enter its critical region.

It is important to notice that betweent3 andt5 P3 ex-
periences priority inversion, and had it been the case
that other processes with priority between ”1” and
”3” had been initialized in this period, for example
if severalP2 processes had been initialized, thenP3

would have been blocked until these too were fin-
ished. Actually the worst case scenario is that this
could result inP3 being blocked forever.

In practice the car starts by driving forward and
thereby locking the engine resource. Shortly after
the drive process will be preempted by the front light
process. When the front light process has finished
running, the drive process will continue unless the
front light process has been triggered again while
running, then it will continue blinking. Only when
both the drive and the front light processes have run
to completion, the stop process is able to start and
thereby stop the engine. Clearly it is not acceptable
that the stop process is postponed because the car
has to blink.

As a solution to this problem we will implement the
Priority Ceiling Protocol inlegOS, which reduces
the worst case blocking time of a process (by lower
priority processes) to at most the duration of the exe-
cution of a single critical region of one lower priority
process [Sha et al., 1990].

4 The Priority Ceiling Protocol

The goal of the Priority Ceiling Protocol is to solve
the priority inversion problem as well as preventing
the formation of deadlock and chained blocking.

The idea is that all mutexes are assigned a ”ceiling
priority”, which is equal to the priority of the high-
est priority process that can lock the mutex. When
a processPj , as the only one, locks a mutex it runs
with its own priority, and can be preempted as nor-
mal. In order for a higher priority processPi to lock
a mutex,Pi has to have a priority higher than the
ceiling priority of any of the already locked mutexes
(if no other mutexes are locked, thenPi is allowed
to lock the mutex regardless of its priority). When
Pi has a higher priority, it means thatPi is not going
to use the same resource as the onePj is currently
using, soPi can preemptPj . If Pi does not have a
higher priority than the ceiling priority, thenPj in-

3



4.3 Preventing Deadlock

herits the priority ofPi, which becomes blocked and
Pj continues running. This approach ensures that
when a processPi preempts a processPj that is run-
ning in its critical region, and then enters its own
critical region, then processPi is guaranteed to have
a higher priority than all of the preempted processes
[Sha et al., 1990], [Jensen, 1999].

4.1 Preventing Priority Inversion

We will now, using the test case presented in section
3, illustrate how priority inversion is prevented with
the Priority Ceiling Protocol. Recall that:

� P1 andP3 share theengineresource guarded by
the mutexM1, giving M1 the ceiling priority 3.

� P2 uses no shared resources.

Figure 2 depicts how the processes in the test case
evolves over time.

t0

P2

t3t2t1 t4 t5 t6

P1

P3

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���Critical region guarded by M1M1

M1 M1

M1

Figure 2: Preventing priority inversion

If we compare the two situations by looking at figure
1 and 2, the difference is that at timet3 whenP3 tries
to lock the mutexM1 guarding theengineresource,
P3 becomes suspended andP1 inheritsP3’s priority
(”3”). P1 then runs to the end of its critical region,
and when it releases theengineresource at timet4 it
obtains its original priority ”1”.P3 can now lockM1

and enter its critical region. At timet5 whenP3 fin-
ishes, that is stopping the engine,P2 has the highest
priority and completes its computation. Finally, att6
P1 can run to the end.

4.2 Deadlock

Deadlock can occur when two processesPi andPj

share two resourcesA andB. If for instancePi locks

the mutex guardingA andPj locks the one guarding
B. Then deadlock occurs ifPj needsA while usingB
andPi needsB while usingA, because the processes
then will be blocked waiting for each other to re-
lease its resource. As mentioned above, deadlock is
prevented by the Priority Ceiling Protocol, but how
does it prevent it?

4.3 Preventing Deadlock

When a processPj tries to lock a mutexM1, and
a processPi is running in its critical region having
locked the mutexM2, then a check is made to see if
Pj has a higher priority than the ceiling priority of
all locked mutexes. If this is the case thenPj locks
M1 and preemptsPi . If not thenPj is not allowed
to lock the mutexM1, andPi inherits the priority of
Pj andPj is suspended. By blockingPj outside its
critical region a possible deadlock has been avoided.

Figure 3 illustrates the test case, which shows the
prevention of a possible deadlock. The test case
consists of the following processes and mutexes.

Processes:

� P3 Blinking light

� P2 Drive forward at slow speed, then speeding
up and down and stop.

� P1 Drive fast backwards, then slowing down,
speeding up and stop.

Mutexes:

� M3 is the mutex guarding theblink resource.

� M2 is guarding theslow speedresource.

� M1 is guarding thefast speedresource.

Relations:

� ProcessesP1 and P2 share the two resources
guarded by mutexM1 andM2.

� ProcessP3 needs a resource guarded by mutex
M3.

At time t2 processP2 tries to lockM2, but since the
ceiling priority of the locked mutexM1 is not lower

4



4.5 Preventing Chained Blocking

t0

P2

t4t3t2t1 t5 t6 t7 t8 t9

P3

P1
���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

2

Critical region guarded by M

Critical region guarded by M

Critical region guarded by M 1

3
M3

M3

M2 2M1M

1 M2 M1M1M1

2M

1

M

M

Figure 3: Preventing deadlock

than the priority ofP2 thenP2 is blocked outside its
critical region, andP1 inherits the priority ofP2 and
continues running in its critical region. At timet3 P3

preemptsP1 and enters its critical region at timet4,
because it has a higher priority than the ceiling prior-
ity of M1. At timet5, P3 finishes andP1 wants to lock
M2. SinceP1 is running in its critical region andM2

is not already locked,P1 is granted the lock onM2.
Next, everything runs to completion and the possible
deadlock, which could have occurred approximately
at timet3, if P2 had been allowed to lockM2 at time
t2, has been avoided.

In practice the car starts by driving fast backwards
and is then preempted by the blinking process and
it will remain at the current speed for as long as the
blinking process runs plus the rest of the time the
fast backwards process was set to run. Then the car
decreases and increases the speed one more time, af-
ter which it changes direction driving slow forward,
speeds up and down and stops. Without the Priority
Ceiling Protocol the car would have deadlocked in
the situation where it drives fast forward and never
stop (at some point it would probably crash!).

4.4 Chained Blocking

Chained blocking is when a higher priority process
is blocked for the duration of the critical region of
several lower priority processes. An example of this
problem is shown on figure 4.

As the figure shows,P3 is blocked for the duration
of the critical region of bothP1 andP2, which is be-
tweent3 andt5.

t0

P2

t2

P3

P1
���
���
���
���

3 6

���
���
���
���

t7

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Critical region guarded by M

���
���
���
���

1

t1 t

���
���
���
���

t4 t5 t

Critical region guarded by M 2

M

M2

1

M

M

M

1

2

M

M

1

12M

2

Figure 4:P3 is blocked for the duration of the critical
region computation ofP1 andP2

4.5 Preventing Chained Blocking

The prevention of chained blocking is solved by the
ceiling priority and by priority inheritance. So by
using both of these properties a higher priority pro-
cess will never be blocked for more than the duration
of one critical region computation of a lower prior-
ity process. An example of this is shown in figure
5.

t0

P2

P3

P1
���
���
���

���
���
���

t1

���
���
���
���

3

Critical region guarded by M 1

���
���
���
���

t4

Critical region guarded by M 2

t2

���
���
���

���
���
���

t
���
���
���

���
���
���

6 t

���
���
���
���

7

���
���
���
���

t t5

M1

M

M

M

2M

1

2M

M

1

2

1

Figure 5:P3 is only blocked for the duration of the
critical region computation ofP1

As it showsP2 can not lockM2 because it has a
lower priority than the ceiling priority ofM1 and
thereforeP3 is blocked for the duration of the crit-
ical region computation of only one lower priority
process, in this caseP1.

5



5.2 Task Scheduling

5 The legOS Operating System

In this section we will give an outline of how the
processes are stored inlegOSand how legOSgo
about getting the the right process to run, sleep or
wait for an event. It is important to understand how
legOShandles the process management in order to
understand the design and implementation of the
Priority Ceiling Protocol.

5.1 Organization of the Processes

Figure 6 shows how the processes are organized in
legOSand some of the attributes in both the process
and priority level structure. The boxes represent pri-
ority levels, which are grouped together to form an
ordered prioritized chain, where 20 is the highest
priority and zero is the lowest priority. Each pri-
ority level contains a pointercpid to a chain of one
or more processes (a process is visualized by a cir-
cle). The process pointed to bycpid is the process in
the process chain that is currently executing or has
been executed most recently. A priority level will
always contain at least one task otherwise it will be
non-existing. To access the priority chain, a pointer
priority head, which points to the highest priority
level, is used. Each priority level contains a pointer
prev (in the figure visualized asp) to the previous
priority level and a pointernext(in the figure visual-
ized asn) to the next priority level.

Priority Head

20F

20E

D20A

3C

B30

Prio 20Prio 3Prio 0

n

n
n

n

n

n

cpid cpid cpid

Prio

Prio Prio

n

n

Prio

p

p

p

p p

p

pp

Figure 6: The organization of processes inlegOS

The process chain pointed to at each priority level
is a chained list of processes. A process can either

be in a state of sleeping, running or waiting for an
event. The processes are connected to each other by
the pointersnextandprevious(visualized in figure 6
by n andp), also each process in the chain contains a
pointerpriority (visualized in figure 6 asprio). This
pointer is used whenever the priority level of a pro-
cess is needed.

Initially, before any user program is started the op-
erating system will only contain two processes, one
with priority zero and one with priority 20. The zero
priority process is used to make the RCX unit go
into sleep mode when not used, and the 20 priority
process is used to receive data from the IR-tower.
Also, this is the place wherelegOSchecks whether
the start program button or the power off button has
been pushed. Since the priority level of processes
are created whilelegOSis running,legOScan itself
run out of memory. Thus,legOSdoes not satisfy the
the reliability requirement stated in section 1.

5.2 Task Scheduling

The task manager uses the above mentioned data
structure to find out which process is the next to run
(in legOSa process that is ready to run is marked
as sleeping). Basically, what the task manager does
is to traverse the process chains in a round-robin
fashion starting at the process chain located at the
highest priority level searching for a process ready
to run. This procedure is repeated every time a task
shift is initiated.

5.3 Event Handling

Finally, we will just mention howlegOSdeals with
events. If the task manager, while looking for a pro-
cess to run, finds a process that is waiting for an
event, the task manager will test if this event have
occurred by running a special wake up function.
This function is defined inside the user program and
takes one argument. In order for the task manager
to be able to get hold of the wake up function and
its argument, both the argument and the address of
the function is stored as attributes in the process data
structure. If the event has occurred the task manager
will execute the process right away, otherwise it will
look for another process leaving the state of the pro-
cess unchanged.

6



6.1 Priority Inheritance

6 Design & Implementation

In this section we will explain how we have de-
signed and implemented the Priority Ceiling Proto-
col in legOS. The design and implementation have
been divided into two parts - one part dealing with
priority inheritance of processes and a second part
dealing with deadlocks and chained blocking. This
section also contains a description of a memory fault
we have encountered during our work withlegOS.

Note that sincelegOSdoes not directly support mu-
texes, we have implemented mutex facilities ac-
cording to the POSIX standard [Butenhof, 1997].
The implementation of the mutex facilities and the
Priority Ceiling Protocol can be found in the files
pthread.handpthread.c. The following procedures
and functions have been implemented:

int pthreadmutexinit(pthreadmutext *,
const pthreadmutexattrt *) ,

int pthreadmutexlock(pthreadmutext *) ,
int pthreadmutexunlock(pthreadmutext *) ,
int pthreadmutextrylock(pthreadmutext *) ,
wakeupt pthreadmutexeventwait(wakeupt),
int pthreadmutexsetprioceiling(pthreadmutext *,

int, int *) ,
int pthreadmutexdestroy(pthreadmutext *) ,
void boostpprio(pthreadmutext *, pdata t *) ,
void deboostpprio(pthreadmutext *, pdata t *) ,
void addto mutexlist(pthreadmutext *) and
void removefrom mutexlist(pthreadmutext *) .

The interface of all the functions starting
with pthreadmutex (except for the function
pthreadmutexeventwait(wakeupt)) are imple-
mented according to the POSIX standard. The rest
are procedures that are called within the POSIX
standard functions. Finally, it should be noted that
the mutexes, as currently implemented, can only be
used when a ceiling priority is given.

6.1 Priority Inheritance

The first thing we have to take into account is how
to boost the priority of a process if this process has
locked a mutex which is needed by a higher priority
process. Consider figure 7(a); let processA3 run in-
side its critical region, which is guarded by a mutex
M. Then imagine that processD7 needsM in order
to finish execution. What we want to do is to boost

the priority ofA3 to the same priority asD7 until A3

releasesM.

(b)

A

Prio 7Prio 5

A

(a)

Prio 7

D

C

Prio 5

B

D

C

Prio 3

B

cpid

n
n

Prio cpid

n

nn n

n

Prio cpid

n

n

n

nn

n n

Prio Prio Prio cpidcpid

n

p

p

p

p p

p p

ppp

p

3 5 7

7

5 7

7

7

p

p

pp

Figure 7: (a) Before boosting the priority of process
A3 to priority level ”7”. (b) After the processA3 has
been boosted to run at priority ”7”

The part of boosting the priority of a process inle-
gOSboils down to moving the process from its orig-
inal priority level to the new priority level. If the
process is the only process at its original priority
level we just remove the priority level and then cre-
ate it again when the process releases the mutex.
Figure 7(b) shows the data structure of the task man-
ager afterA3 has been boosted to priority level ”7”.
When A7 (the boostedA3) releases the mutex the
process will be moved back to its original priority
level and in case this level does not exist we have
to create it again. In order to be able to recreate
the original priority level we store the original prior-
ity of the process in an extra attribute at the time of
process creation. Also, when a process locks a mu-
tex we need to store a pointer to the process lock-
ing the mutex (the owner) in the mutex structure.
By doing this we achieve that when a higher prior-
ity process needs to lock an already locked mutex
the owner can easily be found and (maybe) boosted.
This is also here the main difference between mu-
texes and semaphores shows. It would not be pos-
sible to implement the Priority Ceiling Protocol on
a semaphore object since a semaphore object does

7



6.2 Preventing Deadlock and Chained Blocking

not contain any information about the owner. To
even talk about an owner of a semaphore object does
not make sense, since semaphores do not necessar-
ily need to be released (or decreased) by the same
process.

The possibility of boosting the priority of a
process takes place at the moment a pro-
cess tries to lock an already locked mutex.
Thus, we have implemented the boosting of
a process inpthreadmutexlock(pthreadmutext
*) . This method takes a pointer to a mu-
tex object or structure as argument and tests
if the mutex is not already locked by us-
ing pthreadmutextrylock(pthreadmutext *) . If
the mutex is already locked the priority of the
owner will be boosted by executing the method
boostpprio(pthreadmutext *, pdata t *) . After
this we can only wait for the owner to release
the mutex, this is done by the wait event func-
tion wait event(pthreadmutexeventwait, pdatat
*) , which takes as argument a wake up function and
its argument (the reason why the wakeup function
takes as argument a process and not a mutex, will
be explained later). If the mutex is not locked, a
process is granted a lock on it right away. After the
mutex has been locked we just need to set the new
owner of the mutex. Figure 8 shows a flow diagram
for the locking function.

than the priority of the
process that is trying

Suspend until the
mutex is released

Suspend until the

Is the priority

to lock the mutex

available?

locking the mutex

Boost the priority

of the owner higher

of the process

Is the Mutex

mutex is released

Yes

Mutex

No

No

Yes

Lock the mutex by
setting the owner

Figure 8: Flow diagram for the locking function

A mutex is unlocked using the function
pthreadmutexunlock(pthreadmutext *) . Thus, if
the process that is unlocking the mutex has been
boosted, we need to restore it to its original priority.
We can check if a process has been boosted by

comparing the original priority with the current
priority level that the process is in. If these to
levels are the same we know that the process
has not been boosted. To restore a process to its
original priority level we have used the function
deboostpprio(pthreadmutext *, pdata t *) . This
function have the following behavior. First, it needs
to check whether the original priority level still
exists. If not, a new level is created by using the
original priority attribute and added to the priority
chain. Then the process needs to be moved back to
its original level and all pointers should be restored
to their respective targets. The flow diagram in
figure 9 illustrates the general idea of the design and
the implementation of the unlocking function.

Release the
mutex

Mutex

process been
Has the

boosted?

Yes

No

Move the process
back to its original

priority level

Figure 9: Flow diagram for the unlocking function

6.2 Preventing Deadlock and Chained
Blocking

As you might recall to prevent deadlock and chained
blocking we need to compare the priority of a pro-
cess that wants to lock a mutex to the highest ceiling
priority of all of the already locked mutexes. The
process is only granted a lock if none of the locked
mutexes have a higher ceiling priority than the pri-
ority of the process. Thus, the locking function has
now been extended to first of all check for this sit-
uation before we allow a lock on the mutex. To be
able to make this comparison we need to have an
ordered list of all locked mutexes and an entry to
the list pointing to the mutex with the highest ceil-
ing priority. If the process is not granted a lock
it will be suspended until it has a higher priority
than the ceiling priority of any of the locked mu-
texes. Thus we need to extend the wake up function,

8



6.3 Memory Fault

pthreadmutexeventwait(pdatat *) to perform this
check. The task manager can now use it to decide
whether a process should wake up or continue to be
suspended.

We need to consider just one more thing before we
are finished withpthreadmutexeventwait(pdatat
*) . Consider the scenario depicted in figure 10; at
time t1 a process running at priority level one locks
the mutexM1 and at timet2 the process also acquires
a lock on mutexM2. At time t3 the priority of the
process is boosted to a higher priority level and at
time t4 the process releasesM1 again.

t4

���
���
���
���

���
���
���
���

Release

���
���
���
���

Release

���
���
���
���

Release

���
���
���
���

Lock

t1 t2 t3

Lock

Prio 1

Prio 2

?

?
M

MM1

M

M 2

21

2

Figure 10: Boosting problem

The question is now, at what priority level should
the process continue its execution in? Of course
we would not allow the process to continue running
with the boosted priority, if the reason for boost-
ing the process was that the higher priority process
just needed to lockM1. If we allow this we would
just face a new situation of priority inversion - the
mere problem we where trying to solve! The way
we have solved this problem, is to deboost every
time a mutex is unlocked, unless the unlocking pro-
cess has not been boosted at all. When we deboost
every time a process unlocks a mutex, we need to
boost it again if it still locks a mutex needed by a
higher priority process. Thus we need to extend the
wake up functionpthreadmutexeventwait(pdatat
*) again, so that this function can also boost the
priority of a process. The flow diagram shown
on figure 11 illustrates the extended version of
pthreadmutexeventwait(pdatat *) .

6.3 Memory Fault

Throughout the implementation and testing of the
Priority Ceiling Protocol we encountered some in-
ternal RCX memory faults. These problems ap-
peared when a program was allocating memory to a
new priority level using the functionmalloc(sizet).

Yes

Process P

No

Yes

is found
If a process

is found
If no process

No

Boost the priority of

of the locked mutexes

priority of P

ceiling priority?

higher than any

where the owners priority is itself

priority of P

Do not wake up P

smaller than the priority of P

Is the

Wake up P

Are there

Do not wake up P

mutexes?

Find the owner of the mutex

any locked

Wake up P

with the highest ceiling priority,

this owner to the 

Figure 11: The extended version of
pthreadmutexeventwait(pdatat *)

9



As discussed in thelegOSgroup at LUGnet8 it has
been found that memory addresses from 0xfb80 to
0xfd7f in the RCX is not writable, or more exactly,
data ”stored” in this address space is always read as
0xff. Although, this bug has been fixed in later ver-
sions of legOS, it is still not known whether other
”bad” regions in the memory exists. Our way of fix-
ing this problem was to download our programs to
the second program region (as program number 1)
of the RCX, and by doing this avoiding the ”bad”
memory regions present in the first program region
(program number 0). This apparently fixed our
memory problem, but a complete check for ”bad”
regions in the RCX is recommended to completely
avoid any further memory problems.

7 Testing the Implementation

In order to see how expensive the implementation
is with respect to time, we have compared the exe-
cution time of two test cases by first running them
using mutexes and secondly running them using
semaphores, that is without the Priority Ceiling Pro-
tocol. As the first test case we have chosen the test
case described in section 3 and illustrated in figure
1 and 2 and as the second test case we have used
a slightly modified version where the locking order
ensures that no processes are boosted.

The tests has been performed by running the respec-
tive test cases five consecutive times registering the
start and finish time of the entire run-through. It
should be noted that we have not been able to use the
system time to measure the difference since this is
based on interrupts, and in order to avoid task shifts,
when the mutex facilities are used, interrupts are dis-
abled while executing the lock and unlock functions.
As a result time has been measured by hand (with a
stop watch). The results after three test runs of the
original test case are shown in table 1 and the re-
sults after three test runs of the modified test case
are shown in table 2.

As table 1 shows there is a difference between us-
ing mutexes and semaphores of approximately 340
milliseconds, which yields an average of 68 mil-
liseconds per run-through. Table 2 shows that the
difference between using mutexes and semaphores
when omitting boosting is only about 76 millisec-
onds, which yields an average of 15 milliseconds per

8LEGOr User Group Network,
http://www.lugnet.com/robotics/rcx/legos/

Execution time using mutexes
Difference [msec] Average [msec]

114660
114650 114567
114420

Execution time using semaphores
Difference [msec] Average [msec]

114200
114280 114227
114220

Table 1: Time used to execute test case with boost-
ing

Execution time using mutexes
Difference [msec] Average [msec]

114240
114110 114123
114020

Execution time using semaphores
Difference [msec] Average [msec]

114020
114080 114047
114040

Table 2: Time used to execute test case without
boosting

run-through. From these test results we can see that
the boosting part takes approximately 53 millisec-
onds.

8 Conclusion

Even though the implementation of the Priority
Ceiling Protocol does in fact make thelegOSoperat-
ing system more deterministic and responsive there
is still room for improvements. As you will see in
section 9, priority inversion still occur in the form of
ceiling blocking.

Also, legOSstill does not support interrupts for any-
thing else than the system clock, which means that
external devices can not signal waiting processes di-
rectly, and the operating system then has to poll spe-
cial registers in order to register signals (i.e. in-
terrupts) from external devices. Because of this
polling scheme thelegOSoperating system is still

10



REFERENCES

not as responsive as real-time developers could have
whished for (i.e. interrups can get lost due to the fact
that new interrupts overwrites older interrupts).

On the basis of our work withlegOSwe must con-
clude thatlegOSis far from being a real-time op-
erating system. Even though the implementation of
the Priority Ceiling Protocol has made the operat-
ing system more deterministic and responsive it still
needs a lot of work before it satisfies all the require-
ments for a real-time operating system as stated in
the introduction.

With respect to the implementation, the test results
shows that there is only little overhead when using
mutexes as opposed to using semaphores. Most of
the overhead is probably due to the priority boosting
of processes.

9 Future Work

The Priority Ceiling Protocol is an effective real-
time protocol, but there is still room for improve-
ments. Even though the protocol prevents priority
inversion and deadlock, it introduces a new kind of
priority inversion, called ceiling blocking, where a
higher priority process is blocked by a lower prior-
ity process, even though the low priority process is
not going to use the same resource as the high prior-
ity process.

Also, as mentioned in section 6, the mutex facilities
have only been implemented to support the Prior-
ity Ceiling Protocol. As the system is working now
users can not use mutexes without also using the Pri-
ority Ceiling Protocol. Thus, in order to make the
system more flexible, the users have to be able to use
the mutexes without the ceiling priority and thereby
not using the Priority Ceiling Protocol. Also, some
people would say that deadlock is a feature rather
than a problem, and in order to please those people
the Priority Inheritance Protocol should also be im-
plemented inlegOSas a stand alone option.

References

[Butenhof, 1997] Butenhof, D. R. (1997).Pro-
gramming with POSIX Threads. Addison-
Wesley.

[Jensen, 1999] Jensen, P. K. (1999).Reliable Real-
Time Applications, and how to use tests to model

and understand. PhD thesis, Aalborg University.
Unpublished Ph.D. Thesis Submitted to Institute
for Computer Science.

[Knudsen, 1999] Knudsen, J. B. (1999).The Unof-
ficial Guide to Lego Mindstorms Robots. Beijing-
Farnham : O‘Reilly.

[Noga, 1999] Noga, M. L. (1999). Designing the
legos multitasking operating system.Dr. Doob’s
Journal.

[Pedersen et al., 2000] Pedersen, S. T., Chris-
tensen, L., and Rasmussen, E. B. (2000).
Prioritized interrupts in legos. Unpublished
Project Paper Submitted to Institute for Com-
puter Science at Aalborg University.

[Sha et al., 1990] Sha, L., Rajkumar, R., and
Lehoczky, J. P. (1990). Priority inheritance proto-
cols: An approach to real-time stynchronization.
IEEE Transactions on Computers, 39(9):1175–
1185.

[Stallings, 1998] Stallings, W. (1998). Operat-
ing Systems: internals and design principles.
Prentice-Hall, Inc., 3rd edition.

11


