
Introduction to the legOS kernel.

Stig Nielsson

September 27, 2000

Contents

1 Hardware and the GCC cross compiler 3
1.1 CPU . 3
1.2 ROM and �rmware . 3
1.3 External RAM . 3
1.4 The RCX subsystems . 3
1.5 Stack frame layout . 3

2 The legOS kernel 0.2.4 4
2.1 Starting the kernel . 4
2.2 Timing . 4
2.3 Task management . 5

2.3.1 Dynamically linked user programs . 5
2.3.2 The execi function . 6
2.3.3 The task structures . 6
2.3.4 Summary of the notions of kernel image, user programs, and tasks. 7
2.3.5 The scheduler . 7

2.4 Memory management . 8
2.4.1 Allocating memory . 8
2.4.2 Freeing memory . 9

2.5 Interprocess communication . 9
2.6 Semaphore facility . 9
2.7 IR networking . 10

3 Peripheral devices 10
3.1 Motor control . 10

3.1.1 The motor hardware . 10
3.1.2 Motor handler function . 10
3.1.3 User interface to motor control . 10

3.2 Sensor control . 10
3.2.1 The on-chip A/D converter . 11
3.2.2 Initialisation . 11
3.2.3 The A/D interrupt handler . 11
3.2.4 Rotation sensors . 11
3.2.5 User interface to sensors . 12

3.3 Sound control . 12
3.3.1 The sound handler . 12
3.3.2 Hardware issues . 12
3.3.3 User interface for the sound driver . 12

3.4 LCD display control . 12
3.4.1 The LCD handler . 12
3.4.2 User interface to the LCD display . 13

3.5 Button control . 13
3.5.1 The button handler . 13
3.5.2 Hardware issues . 13
3.5.3 The button user interface . 13

References 13

2

1 HARDWARE AND THE GCC CROSS COMPILER 1.3 External RAM

Abstract

This article presents an introduction to the legOS
kernel with emphasis on documentation of the ker-
nel source version 0.2.4, and less emphasis on the
low level hardware issues.

LegOS is an open source embedded operating
system, featuring preemptive multitasking, dynamic
loading of programs, dynamic memory manage-
ment and IR networking. LegOS is designed to
run on a Lego Mindstorm RCX brick based on
the Hitachi H8/3292 microcontroller. LegOS was
started by Markus Noga in October 1998, con-
tinuously evolving as an open source project at
http://legOS.sourceforge.net

1 Hardware and the GCC cross

compiler

This section brie�y describes the RCX hardware
as well as, the conventions used by the GCC cross
compiler are discussed.

1.1 CPU

The RCX brick uses the Hitachi H8/3292 micro-
controller extended with 32k external RAM. The
microcontroller supports a 16 bit address space,
and has 16 8 bit registers (R0H,R0L,...,R7H,R7L),
which also may be accessed as 8 16 bit registers
(R0,...,R7) for addressing purposes. There are 2
control registers: a 16 bit program counter reg-
ister (PC) and an 8 bit conditions code regis-
ter (CCR). The R7 register is used as the stack
pointer register, and points to the top of the stack
(lowest address). In the assembly language SP is
synonymous with R7. All stack operations access
the stack in 2-byte words.

1.2 ROM and �rmware

The CPU has 16kb of ROM, containing software
provided by the manufacturer. The ROM con-
tains a driver which is run when the RCX is pow-
ered up. The ROM provides low level routines for
driving the RCX and its subsystems. The ROM
interrupt handlers call addresses in RAM, which
allows the �rmware to customise interrupt han-
dling, further details of the ROM can be found in
[5].

The ROM driver is responsible for starting the
�rmware, which is the software stored in the ex-
ternal RAM. By factory default this contains a
bytecode interpreter, leaving only 6k of RAM for
user programs. When legOS is downloaded, the
�rmware is replaced by the kernel image.

LegOS only uses a few of the ROM functions,
which are the functions dealing with power on/o�,
refreshing of the display and sound playing.

1.3 External RAM

The external RAM is referenced in the 0x8000-
0xFFFF address range, although parts of this ad-
dress space are reserved for memory mapped I/O.
Especially the on-chip registers are mapped to
memory in the 0xFF88-0xFFFF range. Further-
more, addresses are reserved for LCD display mem-
ory, memory mapped motor control, shadow reg-
isters for I/O ports, and interrupt vectors. The
RAM holds the kernel image and user programs
and is thus divided into a kernel part and a user
program part. The kernel part is located in the
lower part of memory, and user programs are lo-
cated at higher addresses, see section 2.4. Besides
the external RAM, the RCX does not provide any
storage devices, so consequently there is no notion
of a �lesystem in legOS.

1.4 The RCX subsystems

The Hitachi H8/3292 microcontroller is equipped
with a number of on-chip subsystems. This in-
clude a 16 bit timer, 8 bit timer module with 2
channels, an A/D converter, I/O ports. The 16
bit timer is used to generate the timer interrupts
which drives the OS. The 2 8 bit timer channels
are used for generating signals to the speaker and
for timing infared communication. The A/D con-
verter is used to sample the analog signals from
the sensors. The I/O ports are used for mono-
toring button presses and controlling motors etc.
The interaction between the subsystems and the
OS will be touched upon in 3.

1.5 Stack frame layout

This is a description of the default stack frame
layout used by the GCC cross compiler when com-
piling C programs for the H8/3292, being usefull
when the task manager is explained.

3

2 THE LEGOS KERNEL 0.2.4 2.2 Timing

A function call in C is translated to the jsr

(jump subroutine) instruction, which implicitly
pushes the PC register onto the stack. GCC uses
R6 as a base pointer register and by convention
R6 is callee saved. Actually R6 does not point to
the base of the stack frame, but to the element
following the base element.

The callee starts by pushing R6 on the stack,
and loads the address of this element in R6. R6
will now point to the location which holds the just
saved R6. The �rst 3 arguments are passed in reg-
isters R0,R1 and R2, and are copied to the next 3
elements in the stack frame by the callee. Remain-
ing parameters are referenced in the callers stack
frame. Local variables are allocated on the stack
after the �rst 3 arguments, see �gure 1. The stack
pointer points to the last element pushed onto the
stack.

return address

saved R6

0-3 arguments

local variables

parameters > no.4

return address

caller's BP

0-3 arguments

local variables

Callee's
stackframe

Caller's
stackframe

Parameter
numbers above 3,
are passed on the
stack

Basepointer/R6

Stackpointer/R7

Figure 1: GCC's stack frame layout

The function returns by executing rts (return
from subroutine), but just before that the stack
pointer, and the callee saved R6 are restored. The
PC register is implicitly popped by the rts in-
struction.

2 The legOS kernel 0.2.4

The legOS kernel is monolithic, as all of the source
are compiled together in the same binary image.
The interface for user programs are given in a dy-
namic linker script, which contains all exported
kernel symbols.

2.1 Starting the kernel

The kernel starts when kmain is called by the
ROM. This function initialises the kernel, before

it is started in either single tasking or multitask-
ing mode. If the task manager is not included
in the kernel, only singletasking mode is possible,
and dynamic program loading will not be possi-
ble. In the following I assume that all features of
legOS are used.

During kernel initialisation, 3 tasks are star-
ted. The �rst is the idle task, which is a dummy
task with the lowest priority. The idle task exe-
cutes when no other tasks need CPU time, and
it puts the CPU in power down mode by inde�-
nitely executing the sleep instruction. The next 2
tasks implement the dynamic program loading ca-
pabilities. They are called packet_consumer and
key_handler and are run with the highest pos-
sible priority. The packet_consumer handles ac-
tivity on the IR-port, and the key_handler han-
dles activity on the buttons of the RCX brick.
The task manager is then started, and the kernel
starts switching the execution among the 3 tasks.
New tasks are started by downloading and start-
ing userprograms, as explained in section 2.3.1.

2.2 Timing

LegOS is driven by interrupts from th 16 bit timer,
which is con�gured to make an interrupt every
millisecond. The timer interrupt is handled by a
ROM function, which in turn calls the function
pointed to by ocia_vector. This vector points
to the systime_handler function, de�ned in ker-
nel/systime.c. The systime_handler function polls
all the varoius subsystems in turn, by calling their
handlers. This means that legOS uses polling in-
stead of interrupts, to communicate with the en-
vironment.

The subsystems are handled in the following
order: system timer is incremented, motor han-
dler is called, sound handler is called, LNP (le-
gOS Network Protocol) is checked for timeout, the
button handler is called, the battery indicator is
updated, the legOS state visualisation is updated
and the LCD display is updated.

The last thing which is done, is to check whether
a task switch is needed by inspecting the timeslice
counter of the current task. The default con�gu-
ration of timeslices is 20 milliseconds. The prati-
cal timeslice limits are about 6 milliseonds at min-
imum and 255 at maximum [6]. If the timeslice
of the current slice has elapsed, the tm_switcher

4

2 THE LEGOS KERNEL 0.2.4 2.3 Task management

function is called, which will perform a context-
switch in cooperation with the scheduler.

2.3 Task management

In the following text, I refer to the task manager,
by which I mean the collection of functions and re-
lated functions, implemented in kernel/tm.c, which
deal with the task managing issues. The task
manager is not a separate process or thread.

Before discussing the mulitasking properties
of legOS, it is important to make a clear distinc-
tion between the notion of programs and the no-
tion of tasks/processes (task and process are used
interchangeably), for a brief summary, see 2.3.4.
A program in legOS is the actual binary image
stored in RAM. A process is a thread of execu-
tion, and a running program will have at least one
process, and it can start new processes by the ex-
eci function, see section 2.3.2. Actually, proccess
are more like threads, as they share the memory
space of the program which started them.

pdata_t structure
size_t *sp_save

pstate_t pstate
pflags_t pflags
pchain_t *priority
struct_pdata_t *next
struct_pdata_t *prev
struct_pdata_t *parent
size_t *stackbase
wakeup_t (*wakeup)(wakeup_t)
wakeup_t wakeup_data

Figure 2: The pdata_t structure.

The task manager implements the preemptive
multitasking feature of legOS, by preempting and
scheduling processes, according to some schedul-
ing scheme. A process is described by the process
data structure, de�ned as pdata_t in include/tm.h.
This structure holds the information neccessary
for switching among di�erent tasks, and for or-
ganising tasks in priority queues. The pdata_t

structure includes a saved stack pointer, a process
state, process �ag, the process priority, pointers to
neighbours in the process queue, a pointer to the
parent process, a pointer to the beginning of the
stack and a pointer to the function to be called
when the function returns from a wait state (the
wake-up function). The process state has 5 di�er-
ent values:

Dead The process has terminated and its stack

has been deallocated.

Zombie The process has terminated, but its stack
has not yet been freed.

Waiting The process is idle and waiting for an
event.

Sleeping The process is idle but ready to run.

Running The process is running.

The state information is used by the sched-
uler, and it is the responsibility of the scheduler
to free the stack of a terminated process. A pro-
cess can voluntarily stop executing and wait for
an event, which is done by calling wait_event.
The parameters for wait_event specify a wake-
up function, which is used to check whether the
wait condition is full�lled. The wait condition
check is performed by the scheduler, when it en-
counters waiting processes during the search for
a new process to execute. Wake-up functions ex-
ecutes atomically even though they do not dis-
able interrupts, because they are called by the
systime_handler, which has disabled interrupts.
If the wake-up function returns a non-null value,
the wait condition is no longer satis�ed, and the
process is ready to run. The problem with this
scheme is that wait conditions only are checked
when a new process is scheduled. Thus the wait
condition could have changed value many times
between the check, which could have serious con-
sequences if the process waits for an external event
which must be reacted to rapidly. [6] discusses
this problem.

2.3.1 Dynamically linked user programs

In the early versions of legOS, the user programs
had to be statically linked with the kernel. The
kernel and user program were contained in a sin-
gle binary image, and the entire kernel had to be
recompiled when changes was made to the user
program.

The latest versions of the kernel provide dy-
namic program loading, which makes it possible
to load up to 8 programs into the RAM. User
programs are compiled into a relocateable format
with extension .lx. A dynamic linker and loader
program, called dll is used to download programs

5

2 THE LEGOS KERNEL 0.2.4 2.3 Task management

and link them with the kernel. The boot direc-
tory contains the 2 �les legOS.srec and legOS.lds,
the �rst being the kernel image, and the second a
linker script generated during compilation of the
kernel. The linker script associates all exported
kernel symbols, with their addresses relative to
0x8000, i.e. the start of RAM. When compiling
user programs legOS.lds is used in the linking step
to create the .lx �le. During the downloading of
programs, the �nal linking relative to the memory
allocated for the program is performed.

When downloading a program, the packet_-
consumer task responds to the communication re-
quests from the IR tower, takes care of allocating
memory for the program, and stores the program
in the programs array. After the downloading is
completed, the program can be started by press-
ing the run button on the RCX brick.

Information about the user programs are stored
in an array of 8 program_t structures. This struc-
ture holds information about addresses and sizes
of the .text, .data, and .bss segments of the pro-
grams. Furthermore the structure contains infor-
mation about stack size, the start address relative
to the start of the text segment, priority of the
program and a count of the number of downloaded
bytes, which is used for detecting errors in the
download process. In kernel version 0.2.4, it is not
possible for one user program to start another user
program, because they do not know the address of
each others program_t structures. By exporting
the programs array and the program_run function
to legOS.lds (by making them non-static), it is
possible for one program to start a program in an-
other program slot by indexing into the programs
array. Otherwise, a program has to be started by
selecting it with the prgm button on the RCX,
and then pressing the run button. When a pro-
gram is started, a new task is created with a call
to the execi function.

2.3.2 The execi function

The execi function is used for creating new tasks.
Execi takes as arguments, a pointer to a function
to execute, the number of arguments, the actual
arguments to the function, the priority of the new
task, and a stack size.

Execi will try to allocate memory for a new
pdata_t entry in the priority queues, and allocate

memory for the task's stack. The new task is en-
tered into the task structure as a sleeping process,
as if it had been preempted by the scheduler and
it is therefore necessary to simulate the new task's
stack as that of a sleeping task, in order for the
task manager to execute it.

Address of interrupted task's next
instruction

ROM callee saved data

&rom_ocia_return

&systime_tm_return

saved context of current task,
R1...R5

Figure 3: The general stack frame of a sleeping
task

The address of the exit function is pushed on
the stack. This will be the return address of the
task, and this way tasks will always �nish by a
calling exit. Exit will free the memory that the
user program allocated.

&exit

&task code start

ROM saved ccr(=0)

ROM saved r6(=0)

&ROM return address

callee saved r0

&systime return

saved r1(=argv)

saved r2(=0)

saved r3(=0)

saved r4(=0)

saved r5(=0)

New task's frame

ROM timer interrupt

Systime handler

tm_switcher

Figure 4: The generated stack frame of a new task

The following 3 generated stack frames are: a
stack frame of the ROM timer interrupt function,
a stack frame of the systime_handler, and a stack
frame of the task manager switcher. The details
can be studied in �gure 4.

2.3.3 The task structures

Each task is associated with a priority. In the
current version there are 20 priority levels with

6

2 THE LEGOS KERNEL 0.2.4 2.3 Task management

1 as the lowest priority, and 20 as the highest.
The number of tasks which can be associated with
a given priority level is unbounded. The tasks
are organised in a task structure, which is an or-
dered list of priority levels, the priority chain,
which each has a non empty double linked list of
pdata_t structures, called the task queue. Each
priority level has a designated current task, which
is the task that is currently executing, or most re-
cently has executed. Figure 5 illustrates the task
structure. Note that not all pointers have been
included. Each pdata_t structure also contains a
pointer to the pchain_t element which points to
its priority chain, and a pointer to pdata_t struc-
ture of the parent process.

Next
Preivous

Packet consumer

user process 1
Next
Previous

Previous
Priority =10
cpid
Next

Previous
Priority = 20
cpid Next

Preivous

Key handler

user process 2
Next
Previous

user process 3
Next
Previous

Previous
Priority = 1
cpid Next

Preivous

Idle task

Next

Next

Figure 5: The task structures

Tasks are added to this structure by the execi
function. Execi accesses the task structure in mu-
tual exclusion with other processes, by checking a
semaphore, which also ensures that the scheduler
is not scheduling while the task structure is being
updated.

An insertion of a new task starts by traversing
the priority chain from the top towards the lower
prioritized levels. If a chain exists with a priority
level equal to the priority of the new task, the
task is inserted in the back of the associated task
queue, which will be just after the priority level's
designated task. Otherwise, a new entry in the
priority chain is created, and the task is inserted
in the associated task queue.

2.3.4 Summary of the notions of kernel
image, user programs, and tasks.

To summarise, the kernel is a separately compiled
binary image, which exports a set of symbols (the
symbol table) in a linker script called legos.lds.
The kernel image i located in the beginning of
RAM.

User programs are compiled separately, and
linked with the kernel symbol tabel, creating the
relocateable format .lx. The �nal linking to ab-
solute addresses are done when downloading the
program with dll, after the absolute address of
the text segment of the program is known. User
programs are downloaded to the part of RAM fol-
lowing the kernel image part.

Tasks are started by a user program as threads
in the address space of the user program. As user
programs are compiled in separate address spaces,
user programs cannot start threads in other user
programs.

2.3.5 The scheduler

When a the timeslice of a process has elapsed,
or when a process voluntarily gives up the CPU,
the scheduler is invoked to decide which process
to execute for the next timeslice. A trywait is
made on the task semaphore. If it is blocked, some
other process is updating the task structures, so
the scheduler returns and no new process will be
scheduled. If the task semaphore is not blocked,
the scheduler will block it, and examine the state
of the current process. If it is a zombie, the sched-
uler deallocates its memory, and removes its entry
from the task structure. If it was the last process
in the priority level, the level is removed from the
priority level list.

To �nd the next process to be scheduled the
priority levels are examined, in prioritized order.
In each level the state of the task following the
designated task in the queue is tested. If it is
sleeping, the process is ready to be switched in,
and it is scheduled for execution, by setting its
state to runnning. The scheduler posts the task
semaphore, and returns the saved stack pointer of
the new task.

If the task is in a waiting state, its wake-up
function is tested. If the wake-up function re-
turns a non-null value, the process is selected for

7

2 THE LEGOS KERNEL 0.2.4 2.4 Memory management

running, and the scheduler returns as described
above. If the process is not �nished waiting, the
next process in the level is examined. If no ready
processes are found in the level, the scheduler pro-
ceedes to the next priority level. The idle task is
never in the waiting state, meaning that this task
will execute if no other tasks are eligible.

The scheduler thus uses a prioritized round
robin scheme. The combination of shared pro-
tected resources (semaphores) and priotized schedul-
ing, introduces the problem of priority inversion,
where a lower prioritized process blocks a higher
priortized by holding a resource needed by the
higher prioritized process. No attempts have been
made to avoid this problem, but [4] discusses this
problem and provides a solution.

2.4 Memory management

LegOS uses a straightforward continuous alloca-
tion scheme for managing the memory. There is
no support in the RCX hardware for advanced
memory management schemes such as paging or
segmentation. Furthermore, the memory is a scarce
resource, so an advanced memory management
scheme would probably imply to much overhead.
In the following, the memory manager denotes
the collection of functions de�ned in kernel/mm.c
which implements the memory management.

The memory is divided into a kernel part and
a user program part. The kernel code and static
kernel data are located in the lower part from
adress 0x8000 up to address mm_start, which is a
global variable. The memory manager has the re-
sponsibility of all the memory from address mm_start
to address 0xFFFF.

Process ID

Size

Data �eld

Figure 6: The basic memory block

The memory is organised in memory blocks
which consist of a 4 byte header and an even num-
ber of data bytes, see �gure 6. The �rst 2 bytes
of the header contain the process id of the process
which has allocated the block. If the block is un-
allocated, the value is MM_FREE which is de�ned

to be zero. The 2 last bytes of the header hold
the size of the data block following the header. A
global pointer variable mm_first_free is used to
indicate the �rst free memory block. The unit of
memory used by the memory manager internally
is 2 byte words.

During kernel startup, the memory is initialised
to contain the blocks indicated in 7, and mm_-

first_free it set to point to the �rst free block.
The initialisation is done with 2 macros, MM_-

BLOCK_FREE(addr) and MM_BLOCK_RESERVED(addr).

&mm_start FREE

0xEF30 LCD DATA

0xef50 FREE

0xf000 Motor

0xF010 FREE

0xFB80 Vectors

0xFE00 FREE

0xFF00 Onchip register

Figure 7: The initial memory allocation

As memory is freed, adjacent free memory-
blocks may appear, and they have to be merged
to reduce the amount of external fragmentation.
The function mm_try_join takes the address of
a free memory block as parameter, and merges
it with all the following free memory blocks, un-
til a non-free block is found. The merging re-
quires locking of the memory manager semaphore,
mm_semaphore, which makes all other processes
trying to allocate memory, wait for the merging
operation. Merging is done at di�erent times, de-
pending on the way the kernel runs. In singletask-
ing mode the merging will be done when memory
is freed, but in multitasking mode it is important
to keep the locking of the mm_semaphore at a min-
imum, why it is done at allocation time, where the
semaphore is already locked.

2.4.1 Allocating memory

Kernel proccesses and user programs request mem-
ory allocation by calling malloc. Malloc �rst
waits for the memory manager semaphore mm_se-
maphore to ensure that no other processeses are
manipulating the memory. When granted access

8

2 THE LEGOS KERNEL 0.2.4 2.5 Interprocess communication

to the critical region, malloc will start searching
the memory from address mm_first_free, until a
free memory block of suiteable size is found (or
end of memory is reached in which case null is
returned).

If legOS is running in multitasking mode, an
attempt to merge the free memory block with the
following memory block is made. If the di�er-
ence between the size of the free memory block
and the requested size exceeds a certain threshold
(currently de�ned to headersize + 8 words), the
memory block will be split. When this splitting
occurs, the allocated block will get excactly the re-
quested size, and the remainings of the block will
form a new free block. This reduces the amount
of internal memory fragmentation. The threshold
value must be chosen with care. If it is to small,
there will to much overhead in keeping track of
the memory blocks, and if it is to large, there will
be to much internal fragmentation. If successfull,
malloc returns a pointer to the datablock of the
allocated memoryblock.

2.4.2 Freeing memory

Freeing dynamically allocated memory is done by
calling free. This function simply marks the des-
ignated block as free. Only non-null even ad-
dresses will be considered. As mentioned above,
an attempt to merge the freed block with the pre-
ceeding block is made, if the kernel is running in
single tasking mode. Finally the mm_first_free

pointer is updated.
When processes terminate, their dynamically

allocated memory has to be freed. Exit is called
when processes terminate, and exit calls mm_-
reaper 1. Mm_reaper makes 2 passes through all
memory blocks. The �rst pass marks all blocks
belonging to the terminating process. Note that
the stack memory is not owned by the process, but
by its parent process, and thus the stack will not
be freed by mm_reaper. If the process is �agged
as a kernel process, the memory blocks are not
marked. This is because all dynamically allo-
cated memory is deleted when the RCX is turned
o�. The text and static data segments of the

1Note that there was a bug in mm_reaper, in the o�cial

0.2.4 release. The �x to this bug, added the notion of

process �ags to the pdata_t structure, to be able to

di�erentiate kernel processes from user processes.

user programs are allocated by the packet con-
sumer task. The packet consumer task is �agged
as a kernel process, and its dynamically allocated
memory, i.e. the user programs, will therefore not
be deleted.

This memory management scheme (and the
hardware) does not provide any form of mem-
ory protection, so all processes can write in all
of RAM. Furthermore, programs can dynamically
allocate RAM, so it's possible that programs run
out of memory. User programs must therefore be
written with care to avoid system crashes.

2.5 Interprocess communication

Traditionally an IPC facility in an operating sys-
tem provides means for processes to communicate
data and synchronise their actions. LegOS only
provides the low level semaphore as synchronisa-
tion primitve. No notion of message passing sys-
tems exists. But processes are similar to threads,
so the memory is shared. Processes in di�erent
user programs however, have no kernel supported
means for communicating data.

2.6 Semaphore facility

LegOS provides a semaphore facility which imple-
ments the classical Dijkstra de�nition of semaphores.
The semaphores are counting semaphores. Be-
sides the usual wait and post (signal) operations,
a non-blocking wait called sem_trywait and an
operation for reading the semaphore value, sem_-
getvalue are provided. The wait operation is im-
plemented with the wait_event function, which
puts the proccess in sleep mode, and speci�es a
wake-up function. The wake-up function used
with semaphores is sem_event_wait, which checks
the value of the semaphore.

If a process is blocked on the semaphore and
the semaphore is signalled, the process is not wo-
ken up immediately. Instead the semaphore is in-
cremented, which is not adhering to the de�nition
given in [3]. The next time the scheduler checks
the wake-up function of the process, the process
will be woken. The wake-up function will then
decrement the semaphore, which was incremented
by the post operation.

If several processes are blocked on a semaphore
which is signalled, the �rst process to have its

9

3 PERIPHERAL DEVICES 3.2 Sensor control

wake-up function checked is woken up. As the
wake-up function decrements the semaphore, only
one process will be woken. The scheduler always
examines the higher prioritized processes �rst, so
the higher prioritized processes are woken before
lower prioritized waiting for the same semaphore.
As mentioned earlier, the problem of priority in-
version exists in legOS.

2.7 IR networking

This section is based on the information provided
from the legOS newsgroup [2].

LNP is the LegOS Network Protol which is
used by user programs to communicate over the
IR port. In the current version 2 kinds of LNP
packets can be used. The �rst one is called in-
tegrity packets, which contain no adressing infor-
mation, and is used for broadcasting packets. The
second one is called the addressing packet, and is
like an integrity packet augmented with adress-
ing information, including a source and a destina-
tion address. The addressing packet provides an
UDP like service, which does not guarantee arrival
of sent packets, but guarantees errorfree packets.
For further information please consult the above
mentioned news group.

To communicate with a PC running Linux, a
deamon called lnpd is used. Lnpd allows multi-
ple clients to connect to an RCX running legOS.
Furthermore, a library called liblnp exists, so ap-
plications can connect with remote lnpd deamons.

3 Peripheral devices

LegOS provides interfaces to the various devices
supplied with RCX brick, which includes motor
control,sensor control,sound control, LCD display
control, and button control.

3.1 Motor control

This section explains the way motors/output ports
are handled. The nature of the motors are also
bri�y discussed.

3.1.1 The motor hardware

The motors are controlled by memory mapped
I/O. All 3 motors are controlled by writing in the

byte at address 0xF000.
In legOS the state of a motor is charaterised by

a direction and a speed, and the direction setting
determines the motor behaviour when it recieves
a pulse. Direction forward corresponds to the bit
pattern 01, reverse to 10, stop to 00 and brake to
11. When in brake mode, the motor will hinder
rotation, whereas stop mode allows the motor to
turn freely. Furthermore, an 8 bit speed and an 8
sum variable are used to control the frequency by
wich the direction bits are written to the memory
which controls the motor.

3.1.2 Motor handler function

The motor handler, dm_handler, is called by the
system timer interrupt handler, and it implements
Bresenham's linear drawing algoritm. The 3 mo-
tors are handled in turn. In the motor state,
the sum variable is incremented with the motors
speed setting. If the sum over�ows, the direction
bits for the motor will be written to the 2 bits
controlling the motor, otherwise zeroes are writ-
ten. Thus, if a motor has a speed setting of 255,
it will over�ow every time, and the motor will be
driven every millisecond.

3.1.3 User interface to motor control

The motors are named A,B, and C corresponding
to output port A,B and C on the RCX brick. Each
motor (or output port) is controlled by the 2 func-
tions motor_X_dir and motor_X_speed, where
X is a,b or c. Motor_X_dir takes an enumerated
type as argument, which has the values o�,fwd,rev
and brake. Motor_X_speed takes an integer argu-
ment between MIN_SPEED and MAX_SPEED,
which is 0 and 255 respectively. Using these func-
tions updates the variables, used by the motor
handler. Motors are initialised by calling the mo-
tor shutdown function, which just set all motor
directions to o�.

3.2 Sensor control

This section explains how the sensor values are
sampled by the on-chip A/D converter, to provide
values on the RCX input ports.

10

3 PERIPHERAL DEVICES 3.2 Sensor control

3.2.1 The on-chip A/D converter

The H8/3292 includes a 10-bit successive-approxima-
tions A/D converter with a selection of up to 8
analog input channels. The 8 analog input chan-
nels are named AN0-AN7. The A/D converter
has a set of memory mapped registers, mapped
to the addresses 0xFFE0-0xFFE7. 4 16 bit data
registers named ADDRA-ADDRD contain the re-
sult of A/D conversion of up to 4 input channels.
The data registers are read only and are split in
a high and a low part when mapped to mem-
ory. The control status register (ADCSR) is an
8 bit read/writeable register used for controlling
the A/D converter. ADCSR is mapped to address
0xFFE8. When a conversion of an anlaog signal
has �nished, an interrupt (ADI) can be requested
[1].

3.2.2 Initialisation

The sensors provide data for the 3 input ports
on the RCX. The sensor values are obtained by
converting analog values on the sensors to digital
numbers with the on-chip A/D converter. Only
the �rst 4 of the 8 possible input channels are
used, and the setup is as follows : AN0 is used for
input port 3 (on the RCX), AN1 for input port
2, AN2 for input port 3 and AN4 for reading the
battery level. The A/D converter is initialised by
the function ds_init during kernel initialisation.

First the power output to the 3 sensor ports is
activated, and the A/D converter interrupt (ADI)
vector is set to point to ds_handler. External
triggering of the A/D is disabled, and the status
control register ADCSR is set. This setting im-
plies singlemode operation with a conversion time
of 266 states. As the microcontroller is running
with a system clock of 16 Mhz, each of the 4 chan-
nels are estimated to be sampled 8 to 10 times per
millisecond, when the interrupt handling overhead
is taken into account.

3.2.3 The A/D interrupt handler

After initialisation, the A/D converter periodi-
cally samples the channels, and generates an in-
terrupts handled by ds_handler. The job of ds_-
handler is to alternate between channels, handle
rotation sensors and activate/deactivate output
power to the sensors.

The value of the global variable ds_channel

indicates the channel which number has been sam-
pled, and the corresponding bit number in ds_ac-

tivation indicates if this channel needs a power
output to function properly. If this is the case, the
power output to the sensor is activated. Some
of the sensors are active sensors, needing power
to operate, but the power must be cut o� when
sampling values. The power was cut o� in the
previous call of the handler and must therefore
be turned on after the sampling. This is done by
setting the bit corresponding to the channel num-
ber in I/O PORT 6. The bits in ds_activation

are set with the inline functions ds_passive and
ds_active de�ned in include/dsensor.h. The ro-
tation sensors use the variable ds_rotation and
the inline functions ds_rotation_on and ds_ro-

tation_off.
If rotation sensor support is included in the

kernel, and the current channel has a rotation
sensor, the rotation sensor handler is next called.
R0-r3 are saved before the call, and restored af-
terwards.

The next channel to be sampled is selected,
and the power output to this channel is cut o�.
A busy wait for 32 states is done to allow the
sensor to settle upon the power deactivation. The
ADCSR is adjusted, so the new channel is to be
sampled next and ds_handler returns.

3.2.4 Rotation sensors

Rotation sensors have their own handler function
named ds_rotation, which is called by ds_handler.
The variables mentioned here are actually arrays
with 3 elements, where the element used corre-
sponds to the current channel number.

The rotation sensor is calibrated by calling
ds_rotation_set, which sets the currently sam-
pled value as starting point, and afterwards a state
machine is used for calculating rotations. The raw
values sampled are mapped to the range 0x0-0xF,
and this value corresponds to a state. Each of
the 16 states is associated with a value between
-1 and 3. These values are used to measure when
the rotations counter should be increased by 1 or
decreased by 1. I will not go into the details of
the algorithm, and the source can be found in ker-
nel/dsensor.c.

11

3 PERIPHERAL DEVICES 3.4 LCD display control

3.2.5 User interface to sensors

As the data registers of the A/D converter are
memory mapped, their values are read directly us-
ing the macros SENSOR_1, SENSOR_2 and SENSOR_3
de�ned in include/dsensor.h. These are the raw
digital values, and therefore wrapper macros are
de�ned for the various sensor types.

3 light sensor macros, LIGHT_1-LIGHT_3 are
de�ned in terms of the macro LIGHT. LIGHT_1 is
used for reading the value of a light sensor on
input port 1 and so forth. The LIGHT macro maps
the raw light sensor sampling to a value from zero
to light max/white, where zero is darkness/black.

In the same way, the touch sensors values are
provided by the macros TOUCH_1-TOUCH_3. The
values of the touch sensors are mapped to a binary
value which is either 0 (not activated/touched)
or 1 (activated/touched). The raw battery level
value is provided by the macro BATTERY. The val-
ues of the rotation sensors are optained by the
macros ROTATION_1-ROTATION_3, which expand to
indexing into the ds_rotations array.

3.3 Sound control

3.3.1 The sound handler

Control of the sound capabilities is handled by
the sound handler. The sound handler works by
playing notes and playing pauses, ie. no sound.
A note is a structure which speci�es the node's
pitch and the node's length. Valid node lengths
are whole,half, quarter and eight, where the length
of 1/16th. note is 200 millisecondss. The pitch
speci�ed will be translated to a frequency by in-
dexing into an array called pitch2freq.

The sound handler is driven by calls from the
system time handler. The sound handler mainly
works with 2 variables, dsound_next_note and
dsound_next_time, and a data array of nodes.
The handler function starts by checking if note
should be played, by comparing the system time
with dsound_next_time. If the system time is
greater than dsound_next_note, either an inter-
note (pause) or a note is played, depending on the
value of the internote �ag. An internote is played
every second time, and has a default duration of
15 milliseconds. An internote does not use data
from the node array. The dsound_next_time is
updated, and the internote �ag is reset.

After a node has been played dsound_next_-

time and dsound_next_note are updated, and
the internote �ag is set to indicate that the next
note to play is an internote.

3.3.2 Hardware issues

I will not go into details of exactly how the sounds
are created, but I will list the basic principles. The
source can be found in kernel/dsound.c.

A note is played by calling the inline function
play_freq, which in turns communicates with the
hardware through memory mapped I/O. Channel
zero of the 8 bit on-chip timer module is used
for playing the di�erent sound frequencies on the
speaker.

The sounds are created by letting the timer
generate signals to the speaker. The argument
to play_freq is a 16 bit frequency, of which the
MSB byte is used to decide the clear value of the
timer, and the LSB byte is used to select internal
clock input to the timer.

3.3.3 User interface for the sound driver

A process plays sounds by making an array of
nodes, and caling dsound_play with the array as
parameter. Thus the task which called dsound_-

play can continue doing other things, while the
system timer interrupts drive the sound driver.

The sound playing is stopped when a null is
encountered in the node array. This makes the
handler function fall through to a call to dsound_-
stop. Dsound_stop plays a pause, and then resets
the sound variables. Only one process at a time
can use the sound device.

An array, dsound_system_sounds of prede�ned
systems sounds exists, but currently only one sound,
the system beep, has been de�ned.

3.4 LCD display control

3.4.1 The LCD handler

The LCD display is controlled by the LCD han-
dler, driven by timer interrupts. The handler
function lcd_refresh_next_byte is called every
6th milliseconds. As the LCD data is 9 bytes long,
this results in a complete refresh every 54 millisec-
ond, or 18-19 refreshes per second.

12

3 PERIPHERAL DEVICES 3.5 Button control

2 arrays are used for the LCD data, display_-
memory de�ned by the ROM and lcd_shadow which
contains the last displayed bytes. The shadow ar-
ray is used when refreshing the display, to check
if a refresh is neccessary. Only altered bytes will
be refreshed.

3.4.2 User interface to the LCD display

A manual refresh can be done by calling lcd_-

refresh, which will redisplay all 9 bytes in dis-

play_memory.
In the �le include/conio.h more functions for

user control of the LCD display are declared. This
includes cputs for displaying strings and cputw

for displaying hexadecimal words. These func-
tions are de�ned in terms of cputc_native, which
displays single hex numbers and cputc which dis-
plays single ASCII values. Furthermore, cls is
provided for clearing the display.

3.5 Button control

3.5.1 The button handler

The dkey_handler is called from the system time
handler. The handler is debounced which means
that the button state only will be checked after
a certain debounce timer has elapsed, to avoid
reading a push on a button several times. The
debounce timer is set to 100 ms. Every time the
handler function is called the debounce timer is
checked, and only if it equals zero, the button
state will be handled. Otherwise the handler just
returns (bounces back).

3.5.2 Hardware issues

The buttons are connected to the I/O ports in the
following way : The on/o� button is connected
to bit 1 of I/O port 4, the run button is connected
to bit 2 of port 4, the view button to bit 6 of port
7 and the prgm button to bit 7 of port 7. The val-
ues of these 4 bits are inverted and used to form a
4 bit bitmask. The variable dkey_multi holds the
last used bit mask, and dkey holds the current bit
mask identifying the button(s) pressed. If dkey_-
multi and dkey are equal, dkey is not updated.
Otherwise, both the current bit mask is assigned
to both variables, and the debounce timer is reset

to 100. Thus the variable dkey holds the informa-
tion about the buttons which have been pressed,
and it is the value of this variable which is re-
turned by getchar.

3.5.3 The button user interface

The user interface for buttons is the function getchar,
which waits until a button is pressed, and returns
the value of the button pressed. The button val-
ues are de�ned by the following macros : KEY_-
ONOFF,KEY_RUN,KEY_VIEW, KEY_PRGM
and KEY_ANY. The values can be bitwise ORed
to detect multiple button presses.

13

References References

References

[1] Hitachi Single-Chip Microcomputer H8/3297
Series hardware manual.

[2] http://news.lugnet.com/robotics/rcx/legos/?n=788.

[3] Michael Ben-Ari. Principles of Concurrent
Programming. Prentice-Hall International
Inc., 1982.

[4] M. K. Christiansen M. H. Pedersen and
T. Glæsner. Solving the priority inversion
problem in legos. Technical report, AUC,
2000.

[5] Kekoa Proudfoot. Rcx internals. Tech-
nical report, http://graphics.stanford.edu/-
kekoa/rcx, 1998-1999.

[6] L. Christensen S. T. Pedersen and E. B. Ras-
mussen. Priortized interrupts in legos. Tech-
nical report, AUC, 2000.

14

