Lecture: Workload Models (Advanced Topic)
Real-Time Systems, HT14

Philipp Rümmer

Slides mainly by: Martin Stigge

10. October 2014
System Abstraction for Analysis

Task A
- Every 10ms
- Execute for 2ms

Task B
- Execute Sequence
 - (4, 12), (3, 20), ...

Task C

Diagram showing the execution sequence of tasks and time progression.
Abstracting Code: Jobs

- A job J is a piece of code
- Abstracted as three numbers, $J = (r, e, d)$
 - Release time r
 - Worst-case execution time (WCET) e
 - Deadline d

Real-time scheduling theory:

1. How are jobs released?
2. How are they scheduled?
3. How is schedulability analyzed?
Abstracting Code: Tasks

- **Typical task code structure:**

```plaintext
... loop
    // Execute some function for, e.g.,
    // up to 11ms
    // (obtained via WCET analysis)
    delay until Previous_Period + 50ms;
end loop;
... 
```

- **Periodic Task**
 - Execution time $e = 11\text{ms}$ of each job
 - Period $p = 50\text{ms}$
 - Implicit deadline $d = p$ for each job
The Liu and Layland Task Model

- Each *periodic* task defined via 2 numbers:
 - Job WCET e
 - Minimum inter-release delay p (implicit deadline)

 ![Diagram](image)

- Task set $\tau = \{\tau_1, \ldots, \tau_n\}$ with $\tau_i = (e_i, p_i)$

- How to *schedule* these tasks?
 - Static/fixed priority scheduling (e.g. RM)
 - Dynamic priority scheduling (e.g. EDF)

- How to *analyze* schedulability?
The Liu and Layland Task Model: Schedulability

- **Static priority scheduling**
 - Response time analysis for all tasks
 \[R_i = e_i + \sum_{j \in hp(i)} \left\lfloor \frac{R_i}{p_j} \right\rfloor \cdot e_j \]
 - Compute iteratively; compare with \(p_i \)
 - *Precise* test (sufficient and necessary)
 - Utilization test
 - Define \(U_i := \frac{e_i}{p_i} \) as *utilization* of task \(\tau_i \)
 - \(\tau \) schedulable if \(\sum_i U_i \leq n(2^{1/n} - 1) \)
 - Only sufficient test

- **Dynamic priority scheduling**
 - Just focus on EDF, it’s optimal
 - Simple and precise test: \(\sum_i U_i \leq 1 \)
The Sporadic Task Model

- What if deadlines ≠ periods?
- Each *sporadic* task defined via 3 numbers:
 - Job WCET e
 - Relative deadline d
 - Minimum inter-release delay p

![Diagram showing sporadic task model](image)

- Task set $\tau = \{\tau_1, \ldots, \tau_n\}$ with $\tau_i = (e_i, d_i, p_i)$
- Scheduling?
 - Static/fixed priority scheduling: DM *optimal*
 - Dynamic priority scheduling: EDF *optimal*
 - But how to *analyze* schedulability?
The Sporadic Task Model: Schedulability

- **Static priority scheduling**
 - As before, compute response times
 - (They are independent of deadlines!)

- **Dynamic priority scheduling**, i.e., EDF
 - Simple test $\sum U_i \leq 1$ doesn’t work anymore (why?)
 - Introduce *demand bound functions*
The Demand Bound Function

- General tool/technique for EDF schedulability analysis: dbf(t)
- Intuition:
 - Given a time interval length t
 - dbf(t) bounds the demand for processor time within any t interval

\[dbf(t) = 8 + 8 \]
The Demand Bound Function (cont.)

Definition (Demand Bound Function)

For any t, $\text{dbf}(t)$ is the \textit{maximal} WCET requirement of jobs with

- release time
- and deadline

\textit{within} any interval of length t.

- For a single task τ_i, we write $\text{dbf}_{\tau_i}(t)$. Clearly: $\text{dbf}(t) = \sum_i \text{dbf}_{\tau_i}(t)$

- Typical shape for sporadic tasks:

![Diagram of dbf(τ) function]

- $\text{dbf}_{\tau_i}(t)$

- e_i

- d_i

- p_i

- t
The Demand Bound Function (cont. 2)

So, ...

1. How to use it for schedulability analysis?
2. How to compute $\text{dbf}(t)$?
3. For which values of t?
Schedulability Analysis with dbf(t)

Theorem

A sporadic task system \(\tau = \{\tau_1, \ldots, \tau_n\} \) is EDF schedulable iff:

\[
\forall t \geq 0 : \sum_{i} \text{dbf}\tau_i(t) \leq t
\]

- Computing the *step function*:

\[
\text{dbf}\tau_i(t) = \max\left\{0, \left\lfloor \frac{t - d_i}{p_i} + 1 \right\rfloor \cdot e_i \right\}
\]

- *Which values t need to be checked?*
Which t to Check?

$\forall t : \text{dbf}(t) \leq t$

- Test for intersection with diagonal t
- Trick: Derive linear bound for $\text{dbf}(t)$
 - Intersection with t gives bound D
 - Check only up to D, no intersection beyond that
 - Can be derived using: $\text{dbf}(t) \leq \sum_i e_i + t \cdot \sum_i U_i$
 - Thus: Check $\text{dbf}(t)$ only for
 $$t < \frac{\sum_i e_i}{1 - \sum_i U_i}.$$

- Note: $\sum_i U_i \leq 1$, otherwise system is overloaded
Schedulability for Sporadic Tasks: Summary

- Given a sporadic task set $\tau = \{\tau_1, \ldots, \tau_n\}$
- Compute $dbf(t)$ for increasing $t = 1, 2, \ldots$ using

$$
dbf(t) = \sum_i dbf_{\tau_i}(t) = \sum_i \max\left\{0, \left\lceil \frac{t - d_i}{p_i} + 1 \right\rceil \cdot e_i \right\}
$$

- For each t, check whether $dbf(t) \leq t$
 - If violated: unschedulable!
 - (Optimizations: Only compute at “steps”)
- Terminate procedure as soon as

$$
t = \frac{\sum_i e_i}{1 - \sum_i U_i}
$$

- If no violation found, τ is schedulable!
- Optimization: Terminate already at lcm. (Exercise: Why?)
The General Multiframe (GMF) Task Model

- Code is not always periodic:

  ```
  loop

    // Execute some function
    delay until Period_Start + 50ms;
    // Execute another function
    delay until Prev_Function + 30ms;
    // Execute yet another function
    delay until Prev_Function + 70ms;

  end loop;
  ```

- Task is split in *frames*, each with own
 - Execution time $e^{(j)}$
 - Inter-release separation $p^{(j)}$
 - Deadline $d^{(j)}$ for the job
The General Multiframe (GMF) Task Model (cont.)

- Tasks *cycle* through job types
 - Vector for WCET \((e(1), \ldots, e(n))\)
 - Vector for deadlines \((d(1), \ldots, e(n))\)
 - Vector for minimum inter-release delays \((p(1), \ldots, p(n))\)

![Task cycle diagram]

- Schedulability with EDF?
 - Also use dbf like for sporadic tasks
 - How to calculate dbf? What about the bound?
 - Exercise for the interested!
The Recurring Branching (RB) Task Model

- What about *branches*?

```plaintext
loop
  // Execute some function
  delay until Period_Start + 50ms;
  if (condition) then {
    // Execute another function
    delay until Prev_Function + 30ms;
  } else {
    // Execute yet another function
    delay until Prev_Function + 70ms;
  }
end loop;
```

- Task is a tree
 - Vertices represent jobs
 - Edges represent control flow and delays
 - Restarted once a leaf is reached
The Recurring Branching (RB) Task Model (cont.)

- Introduces *branching* structures
- A *tree* for each task
 - Vertices v: job types with WCET and deadline $\langle e(v), d(v) \rangle$
 - Edges (u, v): minimum inter-release delays $p(u, v)$
 - General period parameter P

![Diagram of task model]

- Schedulability analysis dbf-based, rather involved
Hierarchy of Models

- **L&L**: sporadic, two integers, implicit deadline, efficient
- **sporadic**: three integers, cycle graph, explicit deadline, low
- **GMF**: different job types, tree, high
- **DRT**: branching, loops, arbitrary graph, difficult

Philipp Rümmer
Workload Models
10. October 2014
19
Generalize Further?

What we can model now:

- Periodic behavior
- Arbitrary deadlines
- Multiple frames
- Branching behavior

Still not possible:

- Local loops
- Local modes
- ...

```
loop
  f1();
delay ...
  if (cond) then {
    while (cond2) {
      f2();
      delay ...
    }
  } else {
    f3();
    delay ...
  }
end loop;
```
The Digraph Real-Time (DRT) Task Model

- Branching, cycles (loops), ...
- *Directed graph* for each task
 - Vertices v: job types with WCET and deadline $\langle e(v), d(v) \rangle$
 - Edges (u, v): minimum inter-release delays $p(u, v)$

Rest of lecture: Analyze schedulability?
DRT: Semantics

Path $\pi = (v_4, v_2, v_3)$
DRT: Schedulability Analysis

Theorem

A DRT task system $\tau = \{\tau_1, \ldots, \tau_n\}$ is EDF schedulable iff:

$$\forall t \geq 0 : \sum_{i} \text{dbf}_{\tau_i}(t) \leq t$$

Thus, do as before:

1. Compute demand bound function $\text{dbf}_{\tau_i}(t)$
 - How to do that for given t?
2. Test $\text{dbf}(t)$ for all $t \leq D$ for some bound D
 - How to derive the bound?
Demand Pairs

- Recall demand bound function:
 - Interval length \(t \), sum all demand ...
 - ... of jobs released and with deadline inside

- Consider a path in a task’s graph:

![Graph with nodes and edges]

- Execution demand:
 \[5 + 1 + 3 = 9 \]
- Interval size:
 \[20 + 15 + 8 = 43 \]

Demand pair \(\langle 9, 43 \rangle \)
Demand Pairs (cont.)

- From demand pair \(\langle e, d \rangle \) we learn:
 - Task can create \(e \) units of exec. demand ...
 - ... during interval of size \(d \)

- Useful for demand bound function!

Thus: Compute \(\text{all demand pairs} \); take “maximum”

\[
\text{dbf}_{\tau_i}(t) = \max \{ e \mid \langle e, d \rangle \text{ demand pair with } d \leq t \}
\]
Demand Pairs (cont. 2)

- Formally:
 - Given path $\pi = (\pi_0, \ldots, \pi_l)$
 - **Execution demand**: $e(\pi) := \sum_{i=0}^{l} e(\pi_i)$
 - **Deadline**: $d(\pi) := \sum_{i=0}^{l-1} p(\pi_i, \pi_{i+1}) + d(\pi_l)$
 - $\langle e(\pi), d(\pi) \rangle$ is a demand pair for π

- How to compute all demand pairs?
 - Enumerate them: Too expensive! (Exponential..)
 - Better: Iteration using abstraction
 - (Remark: Demand pairs are abstractions of paths)
Demand Triples

- Idea: Start with 0-paths (one vertex), extend stepwise
- We need: Abstraction which
 1. allows to extend paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
- Idea: **Demand triples**
 - Execution demand $e(\pi)$
 - Deadline $d(\pi)$
 - Last vertex π_l
- Demand triple $\langle e(\pi), d(\pi), \pi_l \rangle$ is another abstraction!

Path (v_4)
\[\sim \langle 5, 10, v_4 \rangle \]

Path (v_4, v_2)
\[\sim \langle 6, 28, v_2 \rangle \]

Path (v_4, v_2, v_3)
\[\sim \langle 9, 43, v_3 \rangle \]
Iterative Procedure

- Create all demand triples up to D:
 1. Start with all *0-paths*, i.e., $\langle e(v), d(v), v \rangle$ for all vertices v
 2. Pick some stored demand triple $\langle e, d, u \rangle$
 3. **Create new demand triple:**
 - Choose successor vertex v of u
 - $e' = e + e(v)$
 - $d' = d - d(u) + p(u, v) + d(v)$
 - $\langle e', d', v \rangle$ is new demand triple!
 4. Store $\langle e', d', v \rangle$ if
 - not stored yet, and
 - $d' \leq D$
 5. Repeat from 2 until no change

- **Efficient** procedure!
 - Note: Actual paths never stored
 - Optimizations: Discard non-critical triples along the way

- Exercise: What’s $\text{dbf}_{\tau_i}(26)$ for graph on previous slide?
Which t to check?

- Recall: Want to check $\text{dbf}(t) \leq t$ for all t
- Find a bound for t just like for sporadic tasks!

\[\forall t : \text{dbf}(t) \leq t \]

Derive linear bound for $\text{dbf}(t)$
- Intersection with t gives bound D

 How to find the linear bound?
Linear Bound for dbf

- Bound is based on *utilization*
 - Long-term demand “rate” (asymptotic)
 - For DRT: “most dense” cycle
 - Highest ratio execution demand (vertices) vs. duration (edges)
 ★ How to find this value? (Exercise!)

Worst behavior: Prefix + Cycle + Suffix

Leads to $\text{dbf}_{\tau_i}(t) \leq t \cdot U(\tau_i) + \sum_j e(v_j)$
 - So, check dbf(t) for which t? (Exercise!)
DRT Schedulability: Summary

- Schedulability test for EDF, based on dbf
- First, compute utilization for all tasks
 - Based on most dense cycles in graphs
- Derive bound D
- Compute $dbf(t)$ for all $t \leq D$
 - Uses iterative procedure with demand triples
 - Path abstraction to reduce complexity
- If $t \leq D$ with $dbf(t) > t$ found: τ unschedulable
- Else: τ schedulable
Hierarchy of Models

- **Difficult**
 - Tree
 - Arbitrary graph
- **Efficient**
 - Cycle graph
 - Three integers
 - Two integers

- **Expressiveness**
 - Low
 - Implicit deadline
 - Explicit deadline
 - Different job types
 - Branching, loops, ...

Schedulability Test
- L&L
- GMF
- RB
- DRT
References
