
1

1

Real Time Programming with Ada (1)

2

Real time programming

 It is mostly about ”Concurrent programming”

 We also need to handle Timing Constraints on
concurrent executions of tasks

However, remember:

 “concurrency” is a way of structuring computer programs

 e.g. three “concurrent modules”: task 1, task 2 task 3

 “concurrency” is often implemented by “fast sequential computation”
using a scheduler

2

3

Programming the car controller

Process Speed:

Loop

 next := get-time + 0.02

 read sensor,compute,display...

 sleep until next

End loop

Process ABS

Loop

next:=get-time + 0.04

 Read sensor, compute, react

sleep until next

End loop

Process Fuel

Loop

next:=get-time + 0.08

 read data, compute, inject ...

 sleep until next

End loop

Soft RT Processes

Loop

 read temperature

 elevator, stereo

End loop

Qustion: do we need 4 CPUs to run these concurrently?

4

Programming the car controller (3)

A feasible Schedule!

0
4

14

20

24

40 44
54

60

64

76
speed

ABS

speed

Fuel-2

speed
ABS

FUEL-3

FUEL-1

speed

 FUEL-4

Soft RT tasks

80

3

5

This is the classic approach: cyclic execution

 Program your tasks in any sequential language

loop

 do task 1

 do task 2

 do task 3

end loop

Efficient code, deterministic, predictable,

But (1) difficult to make it right, (2) difficult to reuse existing design
(3) extremely difficult for constructing large systems

6

In addition, there is an interrupt handling task: I
with 0.5ms processing time every 3ms

0ms 3ms 6ms 9ms 12ms

Cyclic Execution

Task Required sample

rate

Processing

time

t1 3ms (333Hz) 0.5ms

t2 6ms (166Hz) 0.75ms

t3 12ms (83Hz) 1.25ms

4

7

0ms 3ms 6ms 9ms 12ms

Adding new functionality … …

 add task t4 with 12ms rate and 5ms processing time

 12ms cycle has 5.25ms free time...

 ... t4 has to be artificially partitioned

8

void main(void)

{

 do_init();

 while(1) {

 do_task_t1();

 do_task_t2();

 do_task_t3();

 busy_wait();

 do_task_t1(); /* 3ms */

 busy_wait();

 do_task_t1(); /* 6ms */

 do_task_t2();

 busy_wait();

 do_task_t1(); /* 9ms */

 busy_wait();

 }

}

Effect of new task at code level
void do_task_t4(void)

{

 /* Task functionality */

}

void do_task_t4_1(void)

{

 /* first bit */

 state_var_1 = x;

 state_var_2 = y;

 ...

}

void do_task_t4_2(void)

{

 x = state_var_1;

 ...

 /* second bit */

 state_var_3 = a;

 state_var_4 = b;

 ...

}

void do_task_t4_3(void)

{

 c = state_var_4;

 ...

 /* third bit */

}

int state_var_1;

int state_var_2;

int state_var_3;

int state_var_4;

do_task_t4_3();

do_task_t4_2();

do_task_t4_1();

5

9

This is ”ad hoc”, but it is often used in industry

 You just don’t want to do this for large software
systems, say a few hundreds of control tasks

 This was why “Multitasking” came into the picture

10

Concurrent programming with multitasking:

 Program your computation tasks, execute them
concurrently with OS support e.g. in LegOS (or in
Ada in slightly different syntax)

 execi(foo1, ..., priority1, ...);

 execi(foo2, ..., priority2, ...);

 execi(foo3, ..., priority3, ...);

Will start three concurrent tasks running foo1, foo2, foo3

6

11

0ms 3ms 6ms 9ms 12ms

Cyclic Execution vs. Multitasking

12

Ada95

 It is strongly typed OO language, looks like Pascal

 Originally designed by the US DoD as a language for
large safety critical systems i.e. Military systems

 Ada83

 Ada95 + RT annex + Distributed Systems Annex

 Ada 2005 (allows scheduling policies e.g. RR, EDF, dynamic
priorities for protected types …)

7

13

The basic structures in Ada

 A large part in common with other languages
 Procedures

 Functions

 Basic types: integers, characters, ...

 Control statements: if, for, ..., case analysis

 Any thing new?
 Abstract data type: Packages (objects)

 Protected data type
 Tasking: concurrency

 Task communication/synchronization: rendezvous

 Real Time

14

Typical structure of programs

Program Foo(...)

Declaration 1 ----- to introduce identities/variables
 and define data structures

Declaration 2 ----- to define ”operations” : procedures, functions
 and/or tasks (concurrent operations)
 to manopulate the data structures

Main program
(Program body) ------ a sequence of statements or ”operations” to
 compute the result (output)

8

15

Declarations and statements

 Before each block, you have to declare (define) the
variables used, just like any sequential program

procedure PM (A : in INTEGER;

 B: in out INTEGER;

 C : out INTEGER) is

begin

 B := B+A;

 C := B + A;

end PM;

16

If, case, for: contrl-statements

if TEMP < 15 then
 some smart code;
else
 do something else..;
end if;

case TAL is
 when <2 =>
 PUT_LINE(”one or two”);
 when >4 =>
 PUT_LINE(”greater than 4);
end case;

for I in 1..12 loop
 PUT(”in the loop”);
end loop;

9

17

 Types (like in Pascal or any other fancy languages)

type LINE_NUMBER is range 1 .. 72

type WEEKDAY is (Monday, Tuesday, Wednesday);

type serie is array (1..10) of FLOAT;

type CAR is

 record

 REG_NUMBER : STRING(1 .. 6);

 MODEL : STRING(1 .. 20);

 end record;

18

Concurrent and Real-Time Programming with Ada

 Abstract data types
 package

 protected data type

 Concurrency
 Task creation

 Task execution

 Communication/synchronization
 Rendezvous

 Real time:

 Delay ”time period” and Delay until ”next-time point”

 Real-time scheduling/”Fixed-priority scheduling”

10

Package --- Class/Object

19

20

”Package”: abstract data type in Ada

 package definition ---- specification

 Package body ---- implementation

11

21

Package definition -- Specificaiton

 Objects declared in specification is visible externally.

package MY_PACKAGE is

-- declare/define data structures

 Type myobject is record
Name: string

Personalnr: integer

 End myobject

-- declare/define all public operations

 procedure myfirst_operation;

 procedure mysecond_operation;

 function mythird_operation (name: string) return myobject;

end MY_PACKAGE;

22

Package body -- Implementation
 Implements package specification

 (you probably want to use some other packages here e.g..)

 with TEXT_IO;
 use TEXT_IO;

 package body MY_PACKAGE is
 procedure myfirst_operation is
 begin
 myfirst_operation code here;
 end;
 function MAX (X,Y :INTEGER) return INTEGER is
 begin
 … …
 end;
 procedure mysecond_operation is
 begin
 PUT_LINE(“Hello Im Ada Who are U”);
 GET();
 end;

function mythird_operation (name: string) return myobject is
 begin
 … …
 end;

 end MY_PACKAGE;

12

23

Protected data type

 protected Buffer is
 procedure read(x: out integer)

 procedure write(x: in integer)

 private

 v: integer := 0 /* initial value */

 protected body Buffer is
 procedure read(x: out integer) is

 begin x:=v end

 procedure write(x: in integer) is

 begin v:= x end

(note that you can solve similar problems with semaphores)

Tasking

24

13

25

Ada tasking: concurrent programming

 Ada provides at the language level light-weight tasks. These
often refered to as threads in some other languages. The basic
form is:

task T is -------- specification

--- operations/entry (or simply: task T)

end T;

task body T is --------- implementation/body

begin

---- processing----

end T;

26

Example: the sequential case

procedure shopping is
begin
buy-meat;
buy-salad;
buy-wine;
end

Assume pre-defined procedures:

buy-meat
buy-salad

buy-wine

14

27

The concurrent version

procedure shopping is

task get-salad;
task body get-salad is
begin
buy-salad;

end get-salad;

task get-wine;
task body get-wine is
begin
buy-wine;
end get-wine;
begin
buy-meat;
end

buy-salad and buy-wine
will be activated concurrently
 here

And then run in parallel with
buy-meat

28

Creating Tasks

 Tasks may be declared at any program level

 Created implicitly upon entry to the scope of their
declaration.

 Possible to declare task types to start several task
instances of the same task type

15

29

example

procedure Example1 is
 task type A_Type;
 task B;

 A,C : A_Type;

 task body A_Type is

 --local declarations for task A and C
 begin
 --sequence of statements for task A and C

 end A_Type;

 task body B is

 --local declarations for task B
 begin
 --sequence of statements for task B

 end B;

begin

 --task A,C and B start their executions before the first statement of this procedure.

end Example1;

30

Task scheduling

 Allow priorities to be assigned to tasks in task definition

 Allow task dispatching policy to be set (Default: highest priority first)

task Controller is

pragma Priority(10)

end Controller

16

31

Task termination: a task will terminate if:

 It completes execution of its body

 It executes a terminate alternative of a select statement

 It is aborted:
 abort_statement ::= abort task_name {, task_name};

Communication/Synchronization

32

17

33

Task communication/synchronization

 Message passing using ”rendezvous”

 entry and accept

 Shared variables

 protected objects/variables

34

Rendezvous

procedure foo

task T is
 entry E(...in/out parameter...);
end;

task body T is

 begin

 accept E(... ...) do

 ------- sequence of statements
 end E;

 end T;

 task user;
 task body user is
 begin

 T.E(... ...)

 end

begin

...
end

end foo;

T and user will be

started concurrently

18

35

Rendezvous

task body A is
begin
...

B.Call;
...
end A

task body B is
begin
...
accept Call do
....
end Call

...
end A

36

This is implemented with Entry queues
(the compiler takes care of this!)

 Each entry has a queue for tasks waiting to be accepted

 a call to the entry is inserted in the queue

 the first task in the queue will be ”accepted” first (like the queue
for a semaphore)

 By default, the queuing policy is FIFO

 it can be different queuing policies

19

37

 An Example: Buffer

task buffer is
entry put(X: in integer)

entry get(x: out integer)

end;

task body buffer is

 v: integer;
 begin

 loop accept put(x: in integer) do v:= x end put;

 accpet get(x: out integer) do x:= v end get;
 end loop;

 end buffer;

buffer.put(...) --- other tasks (users)!!

Buffer.get(...)

Potential deadlocks

 Task A: …. B.b; accept a …

 Task B: …. A.a; accept b …

38

20

An Example, the Semaphore

 The Idea of a (binary) semaphore

 Two operations, p and v

 p grabs semaphore or waits if not available

 v releases the semaphore

Program Semaphore using Task & RV. Synch.

The specification

 task type Semaphore is
 entry p;
 entry v;
end Semaphore;

The implementation

 task body Semaphore is
begin
 loop
 accept p;
 accept v;
 end loop;
end Semaphore;

21

Program Semaphore using Task & RV

 The implementation:

 task body Semaphore is
begin
 loop
 accept p;
 accept v;
 end loop;
end Semaphore;

Using the Semaphore

 Declare an instance of a semaphore

 Lock : Semaphore;

 Now we can use Lock to protect critical sections

Lock.P;

 Code for Critical Section

Lock.V;

22

43

Choice: Select statement

task Server is
 entry S1(…);
 entry S2(…);
end Server;

task body Server is
 …
begin
 loop
 --prepare for service
 select
 when <boolean expression> =>
 accept S1(…) do
 --code for this service
 end S1;
 or
 accept S2(…) do
 --code for this service
 end S2;
 or
 terminate;
 end select;
 --do any house keeping
 end loop;
end Server;

Real-Time Facilities
(next lecture)

44

