Real Time Programming with Ada (1)

Real time programming

= It is mostly about “Concurrent programming”

= We also need to handle Timing Constraints on
concurrent executions of tasks

However, remember:
= “concurrency” is a way of structuring computer programs
e.g. three “concurrent modules”: task 1, task 2 task 3

= “concurrency” is often implemented by “fast sequential computation”
using a scheduler

Programming the car controller

Process Speed: Process ABS

Loop Loop

next := get-time + 0.02 next:=get-time + 0.04
read sensor,compute,display... Read sensor, compute, react
sleep until next sleep until next

End loop End loop

Process Fuel Soft RT Processes

Loop Loop

next:=get-time + 0.08 read temperature
read data, compute, inject ... elevator, stereo
sleep until next

End loop End loop

Qustion: do we need 4 CPUs to run these concurrently?

Programming the car controller (3)

76 _soft RT tasks
\ . 14
FUEL-4 /
FUEL-1 20

64 o

A feasible Schedule! speed

speed

44

This is the classic approach: cyclic execution

= Program your tasks in any sequential language

loop
do task 1
do task 2
do task 3
end loop

Efficient code, deterministic, predictable,
But (1) difficult to make it right, (2) difficult to reuse existing design
(3) extremely difficult for constructing large systems

Cyclic Execution

Task | Required sample P_rocessing
rate time

t1 3ms (333Hz) 0.5ms

t2 6ms (166Hz) 0.75ms

t3 12ms (83Hz) 1.25ms

In addition, there is an interrupt handling task: I
with 0.5ms processing time every 3ms

= L

Ooms 3ms 6ms Ims 12ms

Adding new functionality

= add task t4 with 12ms rate and 5ms processing time
= 12ms cycle has 5.25ms free time...
= ... t4 has to be artificially partitioned

Ooms 3ms

6ms 9Ims

Effect of new task at code level

void do_task_t4 (void)
{

/* Task functionality */
} i

int
int
int
int

state_var_1;
state_var_2;
state_var_3;
state_var_4;

void main (void)

void do_task_t4_1 (void)

{
/* first bit */
state_var_1 = x;
state_var_2 = y;

1

{
do_init ();
while(1) {

void do_task_t4_2 (void)
{

x = state_var_1;
/* second bit */
state_var_3 = a;

state_var_4 = b;

1

\»

void do_task_t4_3 (void)
{

c = state_var_4;

/* third bit */

-

}

12ms

do_task _tl();
do_task_t2();

sk t10);
do_task_t4_1();
bus it()s

do t
do_task_t2();
do_task_t4_2();
busy wait();

do_task_tl();
do_task_t4_3();

busy wait();

/* 3ms */

/* éms */

/* 9ms */

This is "ad hoc”, but it is often used in industry

= You just don't want to do this for large software
systems, say a few hundreds of control tasks

= This was why "Multitasking” came into the picture

Concurrent programming with multitasking:

= Program your computation tasks, execute them
concurrently with OS support e.g. in LegOS (or in
Ada in slightly different syntax)

execi(fool, ..., priority1, ...);
execi(foo2, ..., priority2, ...);
execi(foo3, ..., priority3, ...);

Will start three concurrent tasks running fool, foo2, foo3

10

Cyclic Execution vs. Multitasking

L] L] L] L]
[T (N (1 T (e
f I I I I I I I I I I I I I
Ooms 3ms 6ms Ims 12ms
L] L]
_0 [L [
_ []
__ B
| I N NI

1

Ada95

= [t is strongly typed OO language, looks like Pascal

= Originally designed by the US DoD as a language for
large safety critical systems i.e. Military systems
= Ada83
= Adad5 + RT annex + Distributed Systems Annex

= Ada 2005 (allows scheduling policies e.g. RR, EDF, dynamic
priorities for protected types ...)

12

The basic structures in Ada

= A large part in common with other languages
» Procedures
= Functions
= Basic types: integers, characters, ...
= Control statements: if, for, ..., case analysis

= Any thing new?
= Abstract data type: Packages (objects)
= Protected data type
= Tasking: concurrency
= Task communication/synchronization: rendezvous
= Real Time

13

Typical structure of programs

Program Foo(...)

Declaration 1 €----- to introduce identities/variables
and define data structures

Declaration 2 &----- to define "operations” : procedures, functions
and/or tasks (concurrent operations)
to manopulate the data structures

Main program

(Program body) <------ a sequence of statements or “operations” to
compute the result (output)

14

Declarations and statements

= Before each block, you have to declare (define) the
variables used, just like any sequential program

procedure PM (A : in INTEGER;
B: in out INTEGER;
C:out INTEGER)is
begin
B := B+A;
C:=B+A
end PM;

If, case, for: contrl-statements

if TEMP < 15 then
some smart code;

else

do something else..;

end if;

case TAL is
when <2 =>
PUT_LINE("one or two");
when >4 =>
PUT_LINE("greater than 4);
end case;

forIin1..12 loop
PUT("in the loop™);
end loop;

15

16

Types (like in Pascal or any other fancy languages)

type LINE_NUMBER isrange 1 .. 72
type WEEKDAY is (Monday, Tuesday, Wednesday);
type serie is array (1..10) of FLOAT;

type CAR is
record
REG_NUMBER : STRING(1 .. 6);
MODEL : STRING(1 .. 20);

end record;

Concurrent and Real-Time Programming with Ada

Abstract data types
= package
= protected data type
Concurrency
= Task creation
= Task execution
Communication/synchronization
= Rendezvous
Real time:
= Delay "time period” and Delay until “next-time point”
= Real-time scheduling/“Fixed-priority scheduling”

17

18

Package --- Class/Object

"Package”: abstract data type in Ada

= package definition - specification
u Package body ---- implementation

19

20

10

Package definition -- Specificaiton

= Objects declared in specification is visible externally.

package MY_PACKAGE is

Type myobject is record
Name: string
Personalnr: integer

End myobject

procedure myfirst_operation;

procedure mysecond_operation;

function mythird_operation (name: string) return myobject;
end MY_PACKAGE;

Package body -- Implementation

= Implements package specification

(you probably want to use some other packages here e.g..)
with TEXT_IO;
use TEXT_IO;

package body MY_PACKAGE is
procedure myfirst_operation is
begin
myfirst_operation code here;

end;
function MAX (X,Y :INTEGER) return INTEGER is

begin
end;
procedure mysecond_operation is
begin
PUT_LINE("Hello Im Ada Who are U”);
GET();
end;
function mythird_operation (name: string) return myobject is
begin
end;

end MY_PACKAGE;

21

22

11

Protected data type

protected Buffer is
procedure read(x: out integer)
procedure write(x: in integer)
private
v: integer := 0 /* initial value */

protected body Buffer is
procedure read(x: out integer) is
begin x:=v end
procedure write(x: in integer) is
begin v:=x end

(note that you can solve similar problems with semaphores) 23

Tasking

24

Ada tasking: concurrent programming

= Ada provides at the language level light-weight tasks. These
often refered to as threads in some other languages. The basic
form is:

task T is L specification
--- operations/entry (or simply: task T)
endT;

task body T is & implementation/body
begin

---- processing----
endT;

25

Example: the sequential case

procedure shopping is

begin
buy-meat;
buy-salad;
buy-wine;
end
Assume pre-defined procedures:
buy-meat
buy-salad

buy-wine

26

The concurrent version

procedure shopping is

buy-salad and buy-wine
will be activated concurrently
here

task get-salad;

task body get-salad is
begin

buy-salad;

end get-salad;

task get-wine;

task body get-wine is
begin
buy-wine;
end get-wi
begin
buy-meat;

end 27

And then run in parallel with
buy-meat

Creating Tasks

= Tasks may be declared at any program level

= Created implicitly upon entry to the scope of their
declaration.

= Possible to declare task types to start several task
instances of the same task type

28

14

example

procedure Examplel is
task type A_Type;
task B;
A,C: A_Type;

task body A_Type is

--local declarations for task A and C
begin

--sequence of statements for task A and C
end A_Type;

task body B is

--local declarations for task B
begin

--sequence of statements for task B
end B;

begin

--task A,C and B start their executions before the first statement of this procedure.
end Examplel;

Task scheduling

m Allow priorities to be assigned to tasks in task definition
m Allow task dispatching policy to be set (Default: highest priority first)

task Controller is
pragma Priority(10)
end Controller

29

30

15

Task termination: a task will terminate if:

B It completes execution of its body
B [t executes a terminate alternative of a select statement

B It is aborted:
B abort_statement ::= abort task_name {, task_name};

Communication/Synchronization

31

32

16

Task communication/synchronization

= Message passing using “rendezvous”
= entry and accept

= Shared variables
» protected objects/variables

Rendezvous

procedure foo

task T is
entry E(...in/out parameter...);

end;
task body T is
begin

end E;
end T;

task user;

task body user is
begin
T.E(C.....)

end

T and user will be
started concurrently

33

34

17

Rendezvous

task body A is
begin

task body B is
begin

B.Call;, =

end A

This is implemented with Entry queues

— accept Call do
end Call

end A

(the compiler takes care of this!)

35

» Each entry has a queue for tasks waiting to be accepted
= a call to the entry is inserted in the queue
= the first task in the queue will be "accepted” first (like the queue

for a semaphore)

= By default, the queuing policy is FIFO
= it can be different queuing policies

36

18

An Example: Buffer

task buffer is

entry put(X: in integer)
entry get(x: out integer)
end;

task body buffer is
v: integer;
begin
loop accept put(x: in integer) do v:= x end put;
accpet get(x: out integer) do x:= v end get;
end loop;
end buffer;

buffer.put(...) other tasks (users)!!
Buffer.get(...)

37
Potential deadlocks
= Task A: B.b; accept a ...
= Task B: A.a; accept b ...

38

19

An Example, the Semaphore

= The Idea of a (binary) semaphore

= Two operations, p and v
= p grabs semaphore or waits if not available
= V releases the semaphore

Program Semaphore using Task & RV. Synch.

= task type Semaphore is

entry p;
entry v;
end Semaphore;

= task body Semaphore is

begin
loop
accept p;
accept v;
end loop;

end Semaphore;

20

Program Semaphore using Task & RV

= The implementation:
= task body Semaphoreis

begin
loop
accept p;
accept v;
end loop;

end Semaphore;

Using the Semaphore

= Declare an instance of a semaphore
= Lock : Semaphore;

= Now we can use Lock to protect critical sections

Lock.P;

Code for Critical Section

Lock.V;

21

Choice: Select statement

task Server is
entry S1(...);
entry S2(...);
end Server;

task body Server is

begin
loop
--prepare for service
select
when <boolean expression> =>
acceptS1i(...)do
--code forthis service
end S1;
or
acceptS2(...)do
--code forthis service
end S2;
or
terminate;
end select;
--do any house keeping
end loop;
end Server;

Real-Time Facilities
(next lecture)

43

22

