
9/25/2014

1

Interesting topics
• Why multiprocessor?

– energy, performance and predictability

• What are multiprocessor systems
– Architectures, OS etc

• Design RT systems on multiprocessors
– Task Assigment

• Multiprocessor scheduling
– (semi-)partitioned scheduling

– global scheduling

Why multiprocessor systems?

To get high performance and to reduce energy
consumption

9/25/2014

2

1

10

100

1000

Now

Performance
[log]

Year

Single Core

Multicore:
Requires
Parallel
Applications

Hardware: Trends

Theoretically you may get:

• Higher Performance

– Increasing the cores -- unlimited computing power  !

• Lower Power Consumption

– Increasing the cores, decreasing the frequency
• Performance (IPC) = Cores * F  2* Cores * F/2  Cores * F

• Power = C * V2 * F  2* C * (V /2)2 * F/2  C * V2 /4 * F

  Keep the “same performance” using ¼ of the energy (by
doubling the cores)

4

This sounds great for embedded & real-time applications!

9/25/2014

3

What’s happening now?

• General-Purpose Computing
 (Symposium on High-Performance Chips, Hot Chips 21, Palo Alto, Aug 23-25, 2009)

– 4 cores in notebooks

– 12 cores in servers

• AMD 12-core Magny-Cours will consume less energy
than previous generations with 6 cores

– 16 cores for IBM servers, Power 7

• Embedded Systems

– 4 cores in ARM11 MPCore embedded processors

What next?

• Manycores (>100’s of cores) predicted to be here
in a few years – e.g. Ericsson

9/25/2014

4

What are multiprocessor systems?

“Tightly connected” processors by a “high-speed”
interconnect e.g. cross-bar, bus, NoC etc.

8

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

B
an

d
w

id
th

Typical Multicore Architecture

8

L2 Cache

Off-chip memory

9/25/2014

5

Key Challenges

• New programming models, languages
– Ada, Erlang run on multiprocessor systems

• Legacy software migration
– Parallelization, synchronization, memory layouts

• New operating systems
– Different strategies

• Real-time guarantees for embedded apps
– Cache interferences

– Multiprocessor scheduling

mcol cnt mcol mcol mcol sha mcol susane mcol susans

0

50000

100000

150000

200000

250000

300000

350000

E
x
e

c
u

ti
o

n
 t
im

e
 (

u
S

)

without cache partitioning

An Experiment on a LINUX machine with 2 cores

WCET (vary 10 – 50%)

mcol runs with different programs

10

9/25/2014

6

An Example Architecture

core 1 core 2 core 3 core 4

Private L1
cache

Private L1
cache

Private L1
cache

Private L1
cache

11

Shared L2 cache

Cache analysis on multicore

• L2 cache contents of task 1 may be over-written by task 2

Task 1 Task 2 Task 3 Task 4

12

9/25/2014

7

Cache analysis on multicore

• L2 cache contents of task 1 may be over-written by task 2

Task 1 Task 2 Task 3 Task 4

13

Cache analysis on multicore

Private L1

cache
Private L1

cache
Private L1

cache
Private L1

cache

Shared L2 cache

14

Task 1 Task 2 Task 3 Task 4

9/25/2014

8

Cache-Coloring: partitioning and
isolation

Task 1 Task 2 Task 3 Task 4

15

Cache-Coloring: partitioning and
isolation

Task 1 Task 2 Task 3 Task 4

16

WCET can be estimated using static techniques for single processor platforms (for the
given portion L2 cache)

9/25/2014

9

Cache-Coloring: partitioning and
isolation

• E.g. LINUX – Power5 (16 colors)

… …

Logical Pages of Task A Logical Pages of Task B

Physical Pages

… … … …

L2 Cache

controlled by
software (OS)

indexed by hardware

17

mcol cnt mcol mcol mcol sha mcol susane mcol susans

0

50000

100000

150000

200000

250000

300000

350000

E
x
e

c
u

ti
o

n
 t
im

e
 (

u
S

)

without cache partitioning

mcol cnt mcol mcol mcol sha mcol susane mcol susans

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

320000

340000

E
x
e

c
u

ti
o

n
 t
im

e
 (

u
S

)

with cache partitioning

An Experiment on a LINUX machine with 2 cores

with Cache Coloring/Partitioning [ZhangYi et al]

18

9/25/2014

10

What to do when #tasks > #cores ?

19

The multicore challenge: Schedulability analysis

• #cores < #tasks

Task 1 Task 2 Task 3 Task 4 Task 5

20

9/25/2014

11

Multiprocessor scheduling

• "Given a set J of jobs where job ji has length li and a number of processors
mi, what is the minimum possible time required to schedule all jobs in J on

m processors such that none overlap?" – Wikipedia

– That is, design a schedule such that the response time of

the last tasks is minimized

• The problem is NP-complete

• It is also known as the “load balancing problem”

Multiprocessor scheduling
 – static and dynamic task assignment

• Partitioned scheduling
– Static task assignment

• Each task may only execute on a fixed processor

• No task migration

• Semi-partitioned scheduling
– Static task assignment

• Each instance (or part of it) of a task is assigned to a fixed processor

• task instance or part of it may migrate

• Global scheduling
– Dynamic task assignment

• Any instance of any task may execute on any processor

• Task migration

9/25/2014

12

Multiprocessor Scheduling

5 2

1 6

8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

cpu 1 cpu 2 cpu 3

2

5

2

1

2 2

3

6

7

4

2 3

Partitioned Scheduling
Partitioned Scheduling

with Task Splitting

Global Scheduling

5 2

1 6

8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling

9/25/2014

13

Global scheduling

• All ready tasks are kept in a global queue

• When selected for execution, a task can be
dispatched to any processor, even after being
preempted

Global scheduling Algorithms

Any algorithm for single processor scheduling may work,
but schedulability analysis is non-trivial

• EDF – Unfortunately not optimal!

– No simple schedulability test known (only sufficient)

• Fixed Priority Scheduling e.g. RM

– Difficult to find the optimal priority order

– Difficult to check the schedulability

9/25/2014

14

Global Scheduling: + and -

• Advantages:
– Supported by most multiprocessor operating systems

• Windows NT, Solaris, Linux, ...

– Effective utilization of processing resources (if it works)
• Unused processor time can easily be reclaimed at run-time (mixture of hard

and soft RT tasks to optimize resource utilization)

• Disadvantages:
– Few results from single-processor scheduling can be used
– No “optimal” algorithms known except idealized assumption (Pfair sch)
– Poor resource utilization for hard timing constraints

• No more than 50% resource utilization can be guaranteed for hard RT tasks

– Suffers from scheduling anomalies
• Adding processors and reducing computation times and other parameters can

actually decrease optimal performance in some scenarios!

Partition-Based Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

Partitioned Scheduling

9/25/2014

15

Bin-packing algorithms

• The problem concerns packing objects of varying
sizes in boxes (”bins”) with the objective of
minimizing number of used boxes.

– Solutions (Heuristics): Next Fit and First Fit

• Application to multiprocessor systems:

– Bins are represented by processors and objects by tasks.

– The decision whether a processor is ”full” or not is derived
from a utilization-based schedulability test.

Partitioned scheduling

• Two steps:

– Determine a mapping of tasks to processors

– Perform run-time scheduling

• Example: Partitioned with EDF

– Assign tasks to the processors such that no processor’s
capacity is exceeded (utilization bounded by 1.0)

– Schedule each processor using EDF

9/25/2014

16

Rate-Monotonic-First-Fit (RMFF):
[Dhall and Liu, 1978]

• First, sort the tasks in the order of increasing periods.

• Task Assignment

– All tasks are assigned in the First Fit manner starting from
the task with highest priority

– A task can be assigned to a processor if all the tasks
assigned to the processor are RM-schedulable i.e.
• the total utilization of tasks assigned on that processor is bounded

by n(21/n-1) where n is the number of tasks assigned.

 (One may also use the Precise test to get a better assignment!)

– Add a new processor if needed for the RM-test.

Partitioned scheduling

• Advantages:

– Most techniques for single-processor scheduling
are also applicable here

• Partitioning of tasks can be automated

– Solving a bin-packing algorithm

• Disadvantages:

– Cannot exploit/share all unused processor time

– May have very low utilization, bounded by 50%

9/25/2014

17

Partition-Based Scheduling with Task-Splitting

cpu 1 cpu 2 cpu 3

2

5

2

1

2 2

3

6

7

4

2 3

Partitioned Scheduling
with Task Splitting

Partition-Based scheduling with Task Splitting

• High resource utilization

• High overhead (due to task migration)

Fixed-Priority Multiprocessor Scheduling

