

Intro. Computer Control Systems: F10

Sensitivity and robustness

Dave Zachariah

Dept. Information Technology, Div. Systems and Control

- 1) When a system is observerable
 - a the states can be estimated arbitrarily well \uparrow
 - **b** the states can be controlled arbitrarily well \uparrow
 - ${f c}$ the system is also stable \downarrow

- 1) When a system is observerable
 - a the states can be estimated arbitrarily well \
 - b the states can be controlled arbitrarily well \uparrow
 - c the system is also stable ↓
- 2) State estimation using an observer
 - a does not handle initial errors of the state \
 - b can be described as a differential equation \(\ \)
 - c is an unstable process ↓

- 1) When a system is observerable
 - a the states can be estimated arbitrarily well \
 - b the states can be controlled arbitrarily well \
 - ${f c}$ the system is also stable \downarrow
- 2) State estimation using an observer
 - a does not handle initial errors of the state \
 - b can be described as a differential equation ↑
 - c is an unstable process ↓
- 3) The transfer function for a control system with estimated states
 - a is different from that of control system with known states \uparrow
 - b is the same as that of control system with known states \
 - c is real-valued ↓

Control system with disturbances and noise

Using general linear feedback

How will the control system cope with unknown disturbances and noise?

Control system with disturbances and noise

Using general linear feedback

How will the control system cope with unknown disturbances and noise?

[Board: the closed-loop system with V(s) and N(s)]

Sensitivity functions

- ▶ Open-loop system: $G_o(s) \triangleq F_y(s)G(s)$
- ► Sensitivity function:

$$S(s) \triangleq \frac{1}{1 + G_o(s)}$$

Sensitivity functions

- ▶ Open-loop system: $G_o(s) \triangleq F_y(s)G(s)$
- Sensitivity function:

$$S(s) \triangleq \frac{1}{1 + G_o(s)}$$

Complementary sensitivity function:

$$T(s) \triangleq 1 - S(s) = \frac{G_o(s)}{1 + G_o(s)}$$

Sensitivity functions

- ▶ Open-loop system: $G_o(s) \triangleq F_y(s)G(s)$
- **▶** Sensitivity function:

$$S(s) \triangleq \frac{1}{1 + G_o(s)}$$

▶ Complementary sensitivity function:

$$T(s) \triangleq 1 - S(s) = \frac{G_o(s)}{1 + G_o(s)}$$

► Consequence:

$$S(s) + T(s) \equiv 1, \quad \forall s$$

▶ S(s) and T(s) affected by controller $F_u(s)$.

Closed-loop system and the sensitivity functions

Closed-loop system:

$$Y(s) = G_c(s)R(s) + S(s)V(s) - T(s)N(s)$$

Closed-loop system and the sensitivity functions

Closed-loop system:

$$Y(s) = G_c(s)R(s) + S(s)V(s) - T(s)N(s)$$

▶ Want both $|S(i\omega)|$ and $|T(i\omega)| \ll 1$ simultanously...

Closed-loop system and the sensitivity functions

Closed-loop system:

$$Y(s) = G_c(s)R(s) + S(s)V(s) - T(s)N(s)$$

- ▶ Want both $|S(i\omega)|$ and $|T(i\omega)| \ll 1$ simultanously...
- ▶ ...but *impossible* since

$$|S(i\omega)| + |T(i\omega)| \ge |S(i\omega) + T(i\omega)| \le 1$$

Closed-loop system and sensitivity functions

Design trade-off

Example:

- ightharpoonup Disturbance v(t) with energy at low frequencies
- ▶ Noise n(t) with energy at high frequencies

Closed-loop system and sensitivity functions

Design trade-off

Example:

- ightharpoonup Disturbance v(t) with energy at low frequencies
- ▶ Noise n(t) with energy at high frequencies

Typical design trade-off is then:

- ▶ low ω : $|S(i\omega)| \ll 1$ to suppress $V(i\omega)$.
- ▶ high ω : $|T(i\omega)| \ll 1$ to suppress $N(i\omega)$.

Closed-loop system and sensitivity functions

Design trade-off

Simultaneously we want Nyquist contour

$$G_o(i\omega) = F_y(i\omega)G(i\omega) = \frac{T(i\omega)}{S(i\omega)}, \quad -\infty \le \omega \le \infty$$

far from -1. (Cf. F6 and F7.)

Control systems with model errors

All models are approximate

Control systems with model errors

All models are approximate

Assume that the real system can be written as

$$G^0(s) = G(s)(1 + \Delta_G(s))$$

▶ The relative model error for G(s):

$$\Delta_G(s) = \frac{G^0(s) - G(s)}{G(s)}$$

Control systems with model errors

All models are approximate

Assume that the real system can be written as

$$G^0(s) = G(s)(1 + \Delta_G(s))$$

▶ The relative model error for G(s):

$$\Delta_G(s) = \frac{G^0(s) - G(s)}{G(s)}$$

▶ How is stability affected by unknown error $\Delta_G(s)$?

Assume:

- 1. Controller F(s) stabilizes the assumed system G(s)
- 2. G(s) and $G^0(s)$ have same number of poles in right half-plane.
- 3. Open-loop: $F(s)G(s) \to 0$ and $F(s)G^0(s) \to 0$ where $|s| \to \infty$

Assume:

- 1. Controller F(s) stabilizes the assumed system G(s)
- 2. G(s) and $G^0(s)$ have same number of poles in right half-plane.
- 3. Open-loop: $F(s)G(s) \to 0$ and $F(s)G^0(s) \to 0$ where $|s| \to \infty$

(Result 6.2) Robustness criterium

If the assumptions are valid and complementary sensitivity function fulfills

$$|T(i\omega)| < \frac{1}{|\Delta_G(i\omega)|}, \quad -\infty \le \omega \le \infty$$

⇒ the *real* closed-loop system is also stable!

 $\Delta_G(i\omega)$ is unknown but is we know limitation $|\Delta_G(i\omega)| < g(\omega)$

 $\Delta_G(i\omega)$ is unknown but is we know limitation $|\Delta_G(i\omega)| < g(\omega)$

$$|T(i\omega)| < \frac{1}{g(\omega)} < \frac{1}{|\Delta_G(i\omega)|}$$

⇒ real closed-loop system is also stable

Summary and recap

- Sensitivity with respect to disturbances and noise
- Sensitivity functions and their impact on control
- Robustness with respect to model errors
- ▶ Robustness criterion in the frequency domain