

Intro. Computer Control Systems: F12

Summary

Dave Zachariah

Dept. Information Technology, Div. Systems and Control

We want to control dynamical systems in a good way

We want to control dynamical systems in a good way

Systems: Linear time-invariant system models

We want to control dynamical systems in a good way

Systems: Linear time-invariant system models

Complex-valued *transfer function* is compact but assumes initial values 0

We want to control dynamical systems in a good way

Systems: Linear time-invariant system models

State-space description with matrices and arbitrary initial values

We want to control dynamical systems in a good way

Systems: Linear time-invariant system models
Interpretations in *time*- and *frequency* domain

We want to control dynamical systems in a good way

Control: Feedback controllers to achieve $y(t) \approx r(t)$

- ▶ PID-controller
- ► State-feedback controller (with observer)

Closed-loop systems from r(t) to y(t)

We want to control dynamical systems in a good way

Control: Feedback controllers to achieve $y(t) \approx r(t)$

General structure for linear feedback (See F5+F10)

We want to control dynamical systems in a good way

Control: Feedback controllers to achieve $y(t) \approx r(t)$

Discrete-time models for digital implementation

We want to control dynamical systems in a good way

Good: Control criteria for closed-loop system Stability

Methods: i) compute poles, ii) Routh's algorithm. Special cases iii) root locus, iv) Nyquist curve $G_0(i\omega)$

We want to control dynamical systems in a good way

Good: Control criteria for closed-loop system

- Quickness
- Damping
- Accuracy

We want to control dynamical systems in a good way

Good: Control criteria for closed-loop system

- Sensitivity towards disturbances and noise
- Robustness towards model errors

Each problem solution evaluated using three criteria:

- 1. submitted solution
- 2. demonstrates understanding of problem
- 3. provides a reasonble and reproducible solution

Each problem solution evaluated using three criteria:

- 1. submitted solution
- 2. demonstrates understanding of problem
- 3. provides a reasonble and reproducible solution
- ► Formula sheet: Key formulae handed out with exam. BETA and Pocket calculator allowed.
- Current idea: bonus points from assignments can eliminate half or the entire first problem.

Each problem solution evaluated using three criteria:

- 1. submitted solution
- 2. demonstrates understanding of problem
- 3. provides a reasonble and reproducible solution
- ► Formula sheet: Key formulae handed out with exam. BETA and Pocket calculator allowed.
- ► Current idea: bonus points from assignments can eliminate half or the entire first problem.

[Board: problems from exam]

The future

Related courses:

- Empirisk modellering
- ► Automatic Control II: MIMO systems and optimal controllers
- Automatic Control III: nonlinear systems, limitations and trade-offs

The future

Related courses:

- Empirisk modellering
- ► Automatic Control II: MIMO systems and optimal controllers
- Automatic Control III: nonlinear systems, limitations and trade-offs

The future

Related courses:

- Empirisk modellering
- ► Automatic Control II: MIMO systems and optimal controllers
- Automatic Control III: nonlinear systems, limitations and trade-offs

Good luck!