Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon
Introduction to computer control systems
Master program in embedded systems, period 2, 2011

Problem solving session III (Ex3) - Solutions

1. Use

$$
e^{A t}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} t^{k}=I+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{6} A^{3} t^{3}+\cdots
$$

and show that

$$
A^{k}=\left[\begin{array}{ccccc}
\lambda_{1}^{k} & 0 & \cdots & & 0 \\
0 & \lambda_{2}^{k} & 0 & \cdots & 0 \\
\vdots & & & & \\
0 & \cdots & & 0 & \lambda_{n}^{k}
\end{array}\right]
$$

Substitute A^{k} in the series to obtain

$$
e^{A t}=\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \ldots & 0 \\
0 & e^{\lambda_{2} t} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & e^{\lambda_{n} t}
\end{array}\right]
$$

2. (a) Use Kirchoff's (voltage and current) laws, and

$$
\begin{aligned}
& v_{L}(t)=L \frac{d i_{L}(t)}{d t} \\
& v_{R}(t)=R i_{R}(t) \\
& i_{C}(t)=C \frac{d v_{C}(t)}{d t}
\end{aligned}
$$

where $v(t)$ denotes voltages and $i(t)$ currents, to obtain

$$
\begin{aligned}
{\left[\begin{array}{l}
i_{L}(t) \\
v_{C}(t)
\end{array}\right] } & =\left[\begin{array}{cc}
-R_{1} / L & -1 / L \\
1 / C & -1 /\left(C R_{2}\right)
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{C}(t)
\end{array}\right]+\left[\begin{array}{c}
1 / L \\
0
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{C}(t)
\end{array}\right]
\end{aligned}
$$

(b) $\Phi(t)=\left[\begin{array}{cc}e^{-t} \cos (t) & -e^{-t} \sin (t) \\ e^{-t} \sin (t) & e^{-t} \cos (t)\end{array}\right]$
(c) $x(0)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$

For a step changing to 0 V at time zero, the time response has only natural system response (due to initial conditions):

$$
x(t)=\left[\begin{array}{l}
e^{-t}(\cos (t)-\sin (t)) \\
e^{-t}(\sin (t)+\cos (t))
\end{array}\right]
$$

(d) Since for $t<0 u(t)$ is the same as in (c), the system initial conditions are the same $(x(0))$, and hence the time response of the state-space variables is given by a sum of the result obtained in (c) with an extra term, due to the input (forced response):

$$
x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

with

$$
\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau=\frac{1}{2} e^{-t}\left[\begin{array}{l}
e^{t}-(\cos (t)-\sin (t)) \\
e^{t}-(\sin (t)+\cos (t))
\end{array}\right]
$$

3. (a) $T=\left[\begin{array}{cc}-1 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right]$ in $\hat{A}=T A T^{-1}$, where \hat{A} is in diagonal form.
(b) $\operatorname{det}(\lambda I-A)=\lambda(\lambda-3)=\lambda^{2}-3 \lambda \Rightarrow \hat{A}=\left[\begin{array}{ll}3 & 0 \\ 1 & 0\end{array}\right]$ and $\hat{B}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ in the controllable canonical form.

$$
T=S(\hat{A}, \hat{B})(S(A, B))^{-1}=\left[\begin{array}{cc}
0.0909 & 0.1818 \\
0.3636 & -0.2727
\end{array}\right]
$$

where $S(A, B)$ is the controllability matrix of the pair (A, B).
(c) $\hat{A}=\left[\begin{array}{ll}3 & 1 \\ 0 & 0\end{array}\right]$ and $\hat{C}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ in the observable canonical form.

$$
T=(O(\hat{A}, \hat{C}))^{-1} O(A, C)=\left[\begin{array}{cc}
5 & 6 \\
-4 & 4
\end{array}\right]
$$

where $O(A, C)$ is the observability matrix of the pair (A, C).
4. (a) The system is not controllable and it is unobservable.
(b) The system is not controllable but it is observable.

