Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon

Introduction to computer control systems: Selected exercises for the problem solving sessions Master program in embedded systems, period 2, 2011

Problem solving session IV (Ex4)

1. (Exercise 3.6 from [1])

Is the following system (a) observable, (b) controllable?

$$x(k+1) = \begin{pmatrix} 0.5 & -0.5 \\ 0 & 0.25 \end{pmatrix} x(k) + \begin{pmatrix} 6 \\ 4 \end{pmatrix} u(k)$$
$$y(k) = \begin{pmatrix} 2 & -4 \end{pmatrix} x(k)$$

2. (Based on [2])

Consider the system

$$\dot{x} = \begin{pmatrix} -2 & 3 \\ 1 & -4 \end{pmatrix} x + \begin{pmatrix} 1 & 8 \\ 2 & 6 \end{pmatrix} u$$

$$y = \begin{pmatrix} 3 & 7 \end{pmatrix} x$$

- (a) Is the system controllable?
- (b) Suppose that we have only access to the input u_1 . Is the system controllable in this case?
- (c) Suppose that the two control signals are coupled so that $u_1+2u_2=0$ always holds. Is the system controllable in this case?
- 3. (Exercise 3.7 from [1])

Is the following system controllable?

$$x(k+1) = \begin{pmatrix} 1 & 0 \\ 0 & 0.5 \end{pmatrix} x(k) + \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} u(k)$$

Assume that a scalar input u'(k) such that

$$u(k) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} u'(k)$$

is introduced. Is the system controllable from u'(k)?

4. (Exercise 3.4 from [3])

Consider the discrete-time system

$$x(t+1) = \begin{pmatrix} 0.2 & 0.1 \\ 0.2 & 0.3 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 2 \end{pmatrix} u(t)$$

Determine, in case it is possible, the input u(t) so that the state vector change from $\mathbf{x}(0)$ to x'(t) in at most two sampling intervals, when

(a)

$$x(0) = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, x'(t) = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

(b)

$$x(0) = \begin{pmatrix} -1\\1 \end{pmatrix}, x'(t) = \begin{pmatrix} 2\\-2 \end{pmatrix}$$

In both cases, it thus holds t' = 1 or t' = 2. Explain the achieved results.

References

- [1] Karl J. Åström and Björn Wittenmark. Computer-Controlled Systems. Prentice Hall, 1997.
- [2] Automatic Control Group (Linköpings University) and Systems and Control Group (Uppsala University). Exercise Manual for Automatic Control. Uppsala University, 2001.
- [3] Mikael Johansson and Torsten Söderström. Exercises Control Theory. Uppsala University and Royal Institute of Technology, 2010.