Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon
Introduction to computer control systems:
Selected exercises for the problem solving sessions
Master program in embedded systems, period 2, 2011

Problem solving session V (Ex5)

1. Consider the system composed by three-tanks in series [1] shown in Fig. 1. The inputs of the system are the tank 1 input flow $f_{i}(t)$ and the tank 1 output flow $f_{0}(t)$. The output of the system is the output flow $f_{3}(t)$ from the tank $3 . A_{1}, A_{2}$ and A_{3} are the cross-sectional area of the tanks, ρ is the density, and $h_{1}(t), h_{2}(t)$ and $h_{3}(t)$ are the tank levels.

Figure 1: Three-tank process.

The system dynamic is described by

$$
\begin{aligned}
\rho A_{1} \frac{d h_{1}(t)}{d t} & =\rho f_{i}(t)-\rho f_{1}(t)-\rho f_{0}(t) \\
\rho A_{2} \frac{d h_{2}(t)}{d t} & =\rho f_{1}(t)-\rho f_{2}(t) \\
\rho A_{3} \frac{d h_{3}(t)}{d t} & =\rho f_{2}(t)-\rho f_{3}(t) \\
f_{1}(t) & =C_{v 1} \sqrt{h_{1}(t)} \\
f_{2}(t) & =C_{v 2} \sqrt{h_{2}(t)} \\
f_{3}(t) & =C_{v 3} \sqrt{h_{3}(t)}
\end{aligned}
$$

(a) Find the linear approximation in the state-space form at the equilibrium point $f_{i, 0}=5 \mathrm{~m}^{3} / \mathrm{h}$ and $f_{0,0}=2 \mathrm{~m}^{3} / \mathrm{h}$. The model parameters are: $A_{1}=1.2 \mathrm{~m}^{2}, A_{2}=1.5 \mathrm{~m}^{2}, A_{3}=1 \mathrm{~m}^{2}, C_{v 1}=3.15, C_{v 2}=2.8$ and $C_{v 3}=2.5$.
(b) Compare the dynamic behaviour for the linear and nonlinear model by simulations for a step change of $+10 \%$ and $+30 \%$ in the input flow $f_{i}(t)$. Explain the differences.
(c) Compute the static gain for the state space model.
2. Consider the pendulum shown in Fig. 2. The system consists of a ball of mass m located at the end of a massless rod with a length l. The moment of inertia of the pendulum about its pivot point is J, the viscous friction coefficient B and the applied torque is T. The rotated angle θ, which is the output variable and is taken as shown in Fig. 2.

Figure 2: Pendulum.

The angle θ is determined by

$$
T=J \frac{d^{2} \theta(t)}{d t^{2}}+B \frac{d \theta(t)}{d t}+m g l \sin (\theta(t))
$$

This nonlinear differential equation of second order describes the dynamic behaviour of the pendulum. The model parameters are $l=1 \mathrm{~m}$, $B=2 \mathrm{Nm} /(\mathrm{rad} / \mathrm{s}), g=9.8 \mathrm{~m} / \mathrm{s}^{2}, m=3 \mathrm{~kg}$ and $J=m l^{2} \mathrm{~kg} \mathrm{~m}{ }^{2}$.
(a) Obtain the state space form at the equilibrium point $\theta_{0}=0$.
(b) Obtain the transfer function.
(c) Obtain the poles and zeros of the system.
(d) Analyse the response of the linear system to a sinusoidal signal $T=A \sin (\omega t)$ for:
i. $A=0.5, \omega=0.1 \mathrm{rad} / \mathrm{s}$.
ii. $A=0.5, \omega=0.04 \mathrm{rad} / \mathrm{s}$.
iii. $A=29.4, \omega=0.04 \mathrm{rad} / \mathrm{s}$.
(e) Compare by simulation the previous responses with the nonlinear system response. Explain the differences.

References

[1] Carlos A. Smith and Armando B. Corripio. Principles and practice of automatic process control. John Wiley \& Sons, USA, 2 edition, 1997.

