Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon
Introduction to computer control systems
Master program in embedded systems, period 2, 2011

Problem solving session V (Ex5) - Solutions

1. (a) $h_{1,0}=0.907, h_{2,0}=1.148, h_{3,0}=1.440$

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-1.3781 & 0 & 0 \\
1.1025 & -0.8711 & 0 \\
0 & 0.1667 & -1.0417
\end{array}\right] \\
B=\left[\begin{array}{cc}
0.8333 & -0.8333 \\
0 & 0 \\
0 & 0
\end{array}\right] \\
C=\left[\begin{array}{lll}
0 & 0 & 1.0417
\end{array}\right]
\end{gathered}
$$

Figure 1: Step change of $+10 \%$ in the input.

Figure 2: Step change of $+30 \%$ in the input.
(c) $\left.G(s)\right|_{s=0}=\left[\begin{array}{ll}0.1269 & -0.1269\end{array}\right]$
2. (a) Let $x_{1}(t)=\theta(t)$ and $x_{2}(t)=\dot{\theta}(t)$
$A=\left[\begin{array}{cc}0 & 1 \\ -9.8 & -2 / 3\end{array}\right], B=\left[\begin{array}{c}0 \\ 1 / 3\end{array}\right], C=\left[\begin{array}{ll}1 & 0\end{array}\right]$
(b) $G(s)=\frac{1 / 3}{s^{2}+\frac{2}{3} s+9.8}$
(c) SISO system: zeros of $G(s)$ are the values of s such that $G(s)=0$ \Rightarrow the system has no zeros;
Poles are the roots of $\operatorname{det}(s I-A)$ i.e. eigenvalues of $A \Rightarrow$ the system has poles located in $s=-0.33 \pm 3.11 i$
(d) $y(t)=A \cdot M\left(\omega_{0}\right) \sin \left(\omega_{0}+\phi\left(\omega_{0}\right)\right)$, where
$M(\omega)=\sqrt{\operatorname{Im}^{2}(G(j \omega))+\operatorname{Re}^{2}(G(j \omega))}$ and $\phi(\omega)=\arctan \frac{\operatorname{Im}(G(j \omega))}{\operatorname{Re}(G(j \omega))}$, with $\operatorname{Re}(\cdot)$ as the real part of its argument and $\operatorname{Im}(\cdot)$ as the imaginary part of its argument.
Using $G(s)$ from (c), and substituting s by $j \omega$,

$$
G(j \omega)=\frac{1 / 3\left(9.8-\omega^{2}\right)}{\left(9.8-\omega^{2}\right)^{2}+4 / 9 \omega^{2}}+\frac{1 / 3(-2 / 3 \omega)}{\left(9.8-\omega^{2}\right)^{2}+4 / 9 \omega^{2}} j
$$

Substitute A and ω by the given values to obtain the response of the sinusoidal system for each case.

