Introduction to computer control systems:
Selected exercises for the problem solving sessions
Master program in embedded systems, period 2, 2011

Problem solving session VI (Ex6)

1. (Exercise 3.20 from [1])
 Given the system
 \[(q^2 + 0.4q)y(k) = u(k),\]
 for which values of \(K\) in the proportional controller
 \[u(k) = K(u_c(k) - y(k))\]
 is the closed-loop system stable?

2. Consider the system defined by
 \[
 \begin{align*}
 x_1(k+1) &= x_1(k) + 0.2x_2(k) + 0.4 \\
 x_2(k+1) &= 0.5x_1(k) - 0.5
 \end{align*}
 \]
 (a) Find the equilibrium point.
 (b) Obtain the state space form.
 (c) Is the model stable?

3. (Based on Exercise 3.22 from [2])
 A dynamic system is given by a scalar differential equation with an algebraic expression given by
 \[
 \begin{align*}
 \frac{d}{dt}\xi &= -\xi + u\eta^3 \\
 0 &= -\eta + u^2e^\eta
 \end{align*}
 \]
 (a) A control system should be designed to keep the system at a given stationary point \(\xi_0\). Determine the full operating point \((\xi_0, u_0, \eta_0)\) when \(\eta_0 = 1.1843\).
(b) The system input is u and its output is $y = \eta \xi$. Determine a linear state model, valid near the operating point determined in (a).

(c) How is the stability of the stationary operating point (ξ_0)?

4. (Based on Exercise 3.26 from [2])

In an autonomous biological process there are two organisms (A and B). The two organisms interact so that they grow in proportion to both concentration, c_A and c_B. The organisms are dying off at a speed proportional to their number. The process is described by the following bilinear equations:

\[
\begin{align*}
\frac{dc_A}{dt} &= -c_A + \alpha c_A c_B \\
\frac{dc_B}{dt} &= -c_B + \beta c_A c_B
\end{align*}
\]

The output of the system is the arithmetic mean $c_M = 0.5(c_A + c_B)$.

(a) Determine the two possible steady states and find the linearized state models around these working points.

(b) Are the two models stable for all combinations of process parameters α and β?

References
