Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon
Introduction to computer control systems:
Selected exercises for the problem solving sessions
Master program in embedded systems, period 2, 2011

Problem solving session VI (Ex6)

1. (Exercise 3.20 from [1])

Given the system

$$
\left(q^{2}+0.4 q\right) y(k)=u(k),
$$

for which values of K in the proportional controller

$$
u(k)=K\left(u_{c}(k)-y(k)\right)
$$

is the closed-loop system stable?
2. Consider the system defined by

$$
\begin{aligned}
& x_{1}(k+1)=x_{1}(k)+0.2 x_{2}(k)+0.4 \\
& x_{2}(k+1)=0.5 x_{1}(k)-0.5
\end{aligned}
$$

(a) Find the equilibrium point.
(b) Obtain the state space form.
(c) Is the model stable?
3. (Based on Exercise 3.22 from [2])

A dynamic system is given by a scalar differential equation with an algebraic expression given by

$$
\begin{aligned}
\frac{d}{d t} \xi & =-\xi+u \eta^{3} \\
0 & =-\eta+u^{2} e^{\eta}
\end{aligned}
$$

(a) A control system should be designed to keep the system at a given stationary point ξ_{0}. Determine the full operating point $\left(\xi_{0}, u_{0}, \eta_{0}\right)$ when $\eta_{0}=1.1843$.
(b) The system input is u and its output is $y=\eta \xi$. Determine a linear state model, valid near the operating point determined in (a).
(c) How is the stability of the stationary operating point $\left(\xi_{0}\right)$?
4. (Based on Exercise 3.26 from [2])

In an autonomous biological process there are two organisms (A and $B)$. The two organisms interact so that they grow in proportion to both concentration, c_{A} and c_{B}. The organisms are dying off at a speed proportional to their number. The process is described by the following bilinear equations:

$$
\begin{aligned}
& \frac{d}{d t} c_{A}=-c_{A}+\alpha c_{A} c_{B} \\
& \frac{d}{d t} c_{B}=-c_{B}+\beta c_{A} c_{B}
\end{aligned}
$$

The output of the system is the arithmetic mean $c_{M}=0.5\left(c_{A}+c_{B}\right)$.
(a) Determine the two possible steady states and find the linearized state models around these working points.
(b) Are the two models stable for all combinations of process parameters α and β ?

References

[1] Karl J. Åström and Björn Wittenmark. Computer-Controlled Systems. Prentice Hall, 1997.
[2] Mikael Johansson and Torsten Söderström. Exercises Control Theory. Uppsala University and Royal Institute of Technology, 2010.

