Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon

Introduction to computer control systems: Selected exercises for the problem solving sessions Master program in embedded systems, period 2, 2011

Problem solving session VI (Ex6)

1. (Exercise 3.20 from [1])

Given the system

$$(q^2 + 0.4q)y(k) = u(k),$$

for which values of K in the proportional controller

$$u(k) = K(u_c(k) - y(k))$$

is the closed-loop system stable?

2. Consider the system defined by

$$x_1(k+1) = x_1(k) + 0.2x_2(k) + 0.4$$

 $x_2(k+1) = 0.5x_1(k) - 0.5$

- (a) Find the equilibrium point.
- (b) Obtain the state space form.
- (c) Is the model stable?
- 3. (Based on Exercise 3.22 from [2])

A dynamic system is given by a scalar differential equation with an algebraic expression given by

$$\frac{d}{dt}\xi = -\xi + u\eta^3$$

$$0 = -\eta + u^2 e^{\eta}$$

(a) A control system should be designed to keep the system at a given stationary point ξ_0 . Determine the full operating point (ξ_0, u_0, η_0) when $\eta_0 = 1.1843$.

- (b) The system input is u and its output is $y = \eta \xi$. Determine a linear state model, valid near the operating point determined in (a).
- (c) How is the stability of the stationary operating point (ξ_0) ?
- 4. (Based on Exercise 3.26 from [2])

In an autonomous biological process there are two organisms (A and B). The two organisms interact so that they grow in proportion to both concentration, c_A and c_B . The organisms are dying off at a speed proportional to their number. The process is described by the following bilinear equations:

$$\frac{d}{dt}c_A = -c_A + \alpha c_A c_B$$

$$\frac{d}{dt}c_B = -c_B + \beta c_A c_B$$

The output of the system is the arithmetic mean $c_M = 0.5(c_A + c_B)$.

- (a) Determine the two possible steady states and find the linearized state models around these working points.
- (b) Are the two models stable for all combinations of process parameters α and β ?

References

- [1] Karl J. Åström and Björn Wittenmark. Computer-Controlled Systems. Prentice Hall, 1997.
- [2] Mikael Johansson and Torsten Söderström. Exercises Control Theory. Uppsala University and Royal Institute of Technology, 2010.