Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon

## Introduction to computer control systems

Master program in embedded systems, period 2, 2011

## Problem solving session VI (Ex6) - Solutions

1. System pulse-transfer operator: $H(q)=\frac{k}{q^{2}+0.4 q+k} \Rightarrow$ the system transfer function is given by $G(s)=\frac{k}{s^{2}+0.4 s+k}$. The roots of the polynomial $s^{2}+0.4 s+k$ must lay inside the unit circle for the system to be stable. The system is hence stable if $0<k<0.04$. Note that $k$ must be greater than zero for the feedback to be negative.
2. (a) $x_{0}=\left[\begin{array}{l}-3 \\ -2\end{array}\right]$
(b) $\Delta x(k+1)=\left[\begin{array}{cc}1 & 0.2 \\ 0.5 & 0\end{array}\right] \Delta x(k)$
(c) $\operatorname{eig}(A)=\{1.0916 ;-0.0916\}$. Since there is an eigenvalue $\lambda_{i}$ such that $\left|\lambda_{i}\right|>1$, the system is unstable.
3. (Based on Exercise 3.22 from [1])

NOTE: The (a) part of this question was changed from the one in the list of exercises. Here follows its correct version:
A dynamic system is given by a scalar differential equation with an algebraic expression given by

$$
\begin{aligned}
\frac{d}{d t} \xi & =-\xi+u \eta^{3} \\
0 & =-\eta+u^{2} e^{\eta}
\end{aligned}
$$

(a) A control system should be designed to keep the system at a given stationary point $\xi_{0}$. Determine the full operating point $\left(\xi_{0}, u_{0}, \eta_{0}\right)$ when $\eta_{0}=1.1843$ and $u_{0}>0$.
The second equation gives $0=-\eta_{0}+u_{0}^{2} e^{\eta_{0}} \Leftrightarrow u_{0}= \pm 0.6020$. Choose the positive solution for $u_{0}$.
At the equilibrium point $\dot{\xi}=0 \Leftrightarrow-\xi_{0}+u_{0} \eta_{0}^{3}=0 \Leftrightarrow \xi_{0}=1$
(b) The system input is $u$ and its output is $y=\eta \xi$. Determine a linear state model, valid near the operating point determined in (a).
The second equation $0=-\eta+u^{2} e^{\eta}$ gives $\eta=u^{2} e^{\eta}$. Replacing $\eta$ in the first equation, it follows

$$
\frac{d \xi}{d t}=-\xi+u^{7} e^{3 \eta}
$$

The linearization of the nonlinear term $f(u, \eta)=u^{7} e^{3 \eta}$ around the stationary point $\left(\xi_{0}, u_{0}, \eta_{0}\right)$ stands as

$$
\begin{aligned}
f(u, \eta) & \approx f\left(u_{0}, \eta_{0}\right)+\left.\frac{\partial f}{\partial u}\right|_{\left(u_{0}, \eta_{0}\right)}\left(u-u_{0}\right)+\left.\frac{\partial f}{\partial \eta}\right|_{\left(u_{0}, \eta_{0}\right)}\left(\eta-\eta_{0}\right) \\
u^{7} e^{3 \eta} & \approx u_{0}^{7} e^{3 \eta_{0}}+7 u_{0}^{6} e^{3 \eta_{0}}\left(u-u_{0}\right)+3 u_{0}^{7} e^{3 \eta_{0}}\left(\eta-\eta_{0}\right) \\
\frac{d \xi}{d t}+\xi & \approx \xi_{0}+7 u_{0}^{6} e^{3 \eta_{0}}\left(u-u_{0}\right)+3 u_{0}^{7} e^{3 \eta_{0}}\left(\eta-\eta_{0}\right) \\
\frac{d \xi}{d t} & \approx-\left(\xi-\xi_{0}\right)+7 u_{0}^{6} e^{3 \eta_{0}}\left(u-u_{0}\right)+3 u_{0}^{7} e^{3 \eta_{0}}\left(\eta-\eta_{0}\right)
\end{aligned}
$$

By defining $E=\xi-\xi_{0}, U=u-u_{0}$ and $N=\eta-\eta_{0}$, and substituting $u_{0}$ and $\eta_{0}$ by its values, it follows that

$$
\frac{d E}{d t}=-E+11.6288 U+3 N
$$

In order to have a linear relation between $\eta$ and $u, 0=-\eta+u^{2} e^{\eta}$ has to be linearized. By using Taylor series expansion around the equilibirium point,

$$
\begin{aligned}
\eta & \approx u_{0} e^{\eta_{0}}+2 u_{0} e^{\eta_{0}}\left(u-u_{0}\right)+u_{0}^{2} e^{\eta_{0}}\left(\eta-\eta_{0}\right) \\
\eta-\eta_{0} & \approx 2 u_{0} e^{\eta_{0}} U+u_{0}^{2} e^{\eta_{0}} N \\
N & \approx 2 u_{0} e^{\eta_{0}} U+u_{0}^{2} e^{\eta_{0}} N
\end{aligned}
$$

Substituting $u_{0}$ and $\eta_{0}$ by its values, it follows that $N=-21.3511 U$. The linearized differential equation is then given by

$$
\frac{d E}{d t}=-E-52.4244 U
$$

The linearized output is given by

$$
\begin{aligned}
y-y_{0} & \approx \xi_{0}\left(\eta-\eta_{0}\right)+\eta_{0}\left(\xi-\xi_{0}\right) \\
Y & =N+1.1843 E \\
Y & =-21.3511 U+1.1843 E
\end{aligned}
$$

$$
\begin{aligned}
\dot{E} & =[-1] E+[-52.4244] U \\
Y & =[1.1843] E+[-21.3511] U
\end{aligned}
$$

(c) How is the stability of the stationary operating point $\left(\xi_{0}\right)$ ?

The linearized system has a pole in -1 so it is stable around the stationary point $\left(\xi_{0}\right)$.
4. (a) SS1: $\overline{c_{A}}=0, \overline{c_{B}}=0$.

SS2: $\overline{c_{A}}=1 / \beta, \overline{c_{B}}=1 / \alpha$.
M1:

$$
\begin{aligned}
\dot{\Delta c} & =\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \Delta c \\
\Delta c_{M} & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] \Delta c
\end{aligned}
$$

M2:

$$
\begin{aligned}
\dot{\Delta c} & =\left[\begin{array}{cc}
0 & \alpha / \beta \\
\beta / \alpha & 0
\end{array}\right] \Delta c \\
\Delta c_{M} & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] \Delta c
\end{aligned}
$$

(b) M1 is assymptotically stable and M2 is unstable regardless the values of the process parameters $\alpha$ and $\beta$.

## References

[1] Mikael Johansson and Torsten Söderström. Exercises Control Theory. Uppsala University and Royal Institute of Technology, 2010.

