Systems and Control
Department of Information Technology
UPPSALA UNIVERSITY
www.it.uu.se/research/syscon

Introduction to computer control systems: Selected exercises for the problem solving sessions Master program in embedded systems, period 2, 2011

Problem solving session VIII (Ex8)

1. Consider the following continuous-time second order linear system

$$G(s) = \frac{4}{4s^2 + 12s + 8}$$

and the PID controller given by

$$H(s) = k_P + \frac{k_I}{s} + k_D s$$

- (a) Obtain the resonance frequency ω_n and the damping factor ξ for system G(s).
- (b) Obtain the closed-loop transfer function.
- (c) Obtain the PID parameters such that the closed-loop poles are in $p_{1,2}=-5\pm 2i$ and p_3 =-10.
- 2. Consider the continuous-time linear system given by

$$G(s) = \frac{100}{5s+10}$$

(a) Design a PI controller

$$H(s) = k_P + \frac{k_I}{s}$$

so that the closed-loop poles have a resonance frequency $\omega_n = 4$ and a damping factor $\xi = 0.707$.

(b) Compute the static gain for the closed loop system.

3. Consider the following continuous-time system

$$\dot{x} = \begin{pmatrix}
-1.6537 & 0 & 0 \\
1.6537 & -1.3067 & 0 \\
0 & 1.3067 & -1.0417
\end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} u$$

$$y = (0 \quad 0 \quad 1.0417)x$$

which is controlled by $u = -K\hat{x}$ (\hat{x} are the estimated states), where $K = \begin{bmatrix} 5.50 & 6.86 & 3.91 \end{bmatrix}$. The observer is given by

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

where $L = [2743.3 \quad 756.0 \quad 53.8]^T$.

(a) Compute the closed loop system poles. Compare with the poles of the open loop system.