
Uppsala University
Dept. of Information Technology
Systems and Control

Introduction to Computer Control

Systems

Computer exercise 1

Modeling, analysis, and PID control

Reading instructions: Glad-Ljung, Chapters 2, 3, 4, 6, and 11.

Name Assistant’s comments

Program Year of reg.

Date

Passed prep. ex. Sign

Passed comp. ex. Sign



1 Introduction

This computer simulation exercise provides an introduction to the process lab,
exercise 2. A nonlinear model of the robotic vehicle is considered and linearized
at working points. Some properties of the linearized model are studied in com-
parison with the nonlinear one. Further, the linear model is sampled to enable
digital implementation. Then properties of the model are revisited. Finally, the
closed-loop system comprising the model of the plant and a PID controller is
simulated for different sets of the controller parameters to illustrate expected
performance of the control system.

To be well-prepared for this computer exercise, one should have read the chap-
ters 2, 3, 4, 6, and 11 in the course book by Glad-Ljung thoroughly.

For the computer exercise, access to Matlab and Control System Toolbox is
necessary. There is also a number of .m-files that are needed.

2 Modeling of the vehicle

The model of the system in this section is essentially the same as the one that will
be implemented in the process labs. Figure 1 shows a sketch of the built vehicle.
The vehicle could be separated into several basic parts, namely the brick, the
motors, the wheels, and the sensor. Each of them has its own moment of inertia.

Center of track

Sensor

Brick

ϕ

R

r

f r

f l

T

L

y

Figure 1: Robot viewed from above.

The vehicle will be given a constant forward speed v while the angle φ to the
track axis is the controlled variable. To turn by a certain angle, the motors
at the sides of the brick should be given an appropriate input signal ∆u. For
instance, to turn to the right side, the input voltage on the left motor ul has to
be higher than the input voltage on the right motor ur. This relation could be

2



Variable Description Unit

T Torque Nm
R Wheel axis raduis m
φ Angle to track rad
τr,l Torque on left and right wheel Nm
θr,l Rotation angle of left and right wheel rad
I Moment of inertia for robot around the center of rotation

Table 1: List of variables

described as follows

ul = u0 +
∆u

2

ur = u0 −

∆u

2

with u0 representing the offset voltage corresponds to the constant velocity v.
The distance between the center of the track and the center of vehicle’s rotation
is given by y. Thus, a model representing the relation between the input signal
u and the output signal y is evaluated

u =
∆u

umax

100

= K∆∆u

where the input signal u is the percentage of maximum voltage that can be
supplied to the motors.

There is a number of possible models that can describe the behavior of the above
described vehicle. One of the easier ways to perform modeling is by separating
the translational and rotational movement.

Translational movement

The vehicle’s translational movement is in the direction perpendicular to the
track. This is given by two distances y1 and y2 as shown in Fig. 2. The distance
y1 will be the integrated velocity component perpendicular to the track while y2

is the distance component perpendicular to the track due to the sensor rotation
by the angle φ. It can be expressed by the following equations

y(t) = y1(t) + y2(t) (1)

y1(t) =

∫ T

0

v sin(φ(t))dt

y2(t) = L sin(φ(t))

The translational velocity of the vehicle is proportional to the offset voltage u0

v = Kuu0.

3



1

2

Sensor

V

Center of track

L
y

y

Figure 2: Translational part y1 and rotational part y2 of the total distance to the

center of track y.

Rotational movement

From mechanics, the angle of the robot around the center of rotation could be
defined as follows

φ =
r(θl − θr)

2R
. (2)

There are two ways to express the torque acting on the vehicle. The first way
is by defining the difference between the torques on each wheel

T =
R(τl − τr)

r

The other way is by defining moment of inertia of the system around a rotating
body

T = Iφ̈,

which would lead to the following relation between the torques on each wheel
and the angle of the vehicle

τl − τr =
rI

R
φ̈ (3)

The input signal given to the model is the difference between the voltage level
of right and left motor. A model for a DC motor that describes the relation
between the input voltage and the output torque is derived below. The total
torque τtot that the motor will exert is proportional to the input voltage, i.e.
(τtot)r,l = Kτur,l. To produce an angular acceleration, the wheel requires a
torque of τw = Iwθ̈. Furthermore, there is a torque required to account for the
friction and back emf of the motor that is proportional to the angular velocity
of the wheel τf = Kbθ̇. The remainder of the torque τ will act on the load, i.e.
move the vehicle. This gives the relation (dropping the indexes l and r for left
and right motors).

τtot = τw + τf + τ

τ = τtot − τf − τw

= Kτu − Iwθ̈ − Kbθ̇ (4)

4



Putting together (2), (3) and (4) yields

rI

R
φ̈ = −Iw(θ̈l − θ̈r) − Kb(θ̇l − θ̇r) + Kτ (ul − ur)

= −

2RIw

r
φ̈ −

2RKb

r
φ̇ + Kτ∆u.

Moving the terms related to φ to the left-hand side of equation results the
differential equation

T φ̈ + φ̇ = Ku (5)

with

K =
Kττ

2RKbK∆

T =
1

Kb

(
r2I

2R2
+ Iw).

The output of the system is the distance from the center of the track to the
sensor which according to (1) is given by

y(t) = L sin(φ(t)) +

∫ t

0

v sin φ(τ)dτ. (6)

The nonlinear system could be represented in state space form as follows

x =
[

x1 x2 x3

]T
=

[

φ φ̇
∫ t

0
sinφ(τ)dτ

]T





ẋ1

ẋ2

ẋ3



 =





x2

−

1

T
x2

sin (x1)



 +





0
K
T

u

0



 (7)

y =
[

L sin (x1) + vx3

]

Exercise 2.1: (Preparation exercise) Derive the linearized model from given
model (7) around the equilbrium point φ = φ0 and u = 0 where sin(φ0) = 0.
(Hint: Glad-Ljung 11.4)

Answer:

5



Create a continuous system sys_c in state space form using the command
ss(). Run the command step() to see the step response of the system. Use the
following values for the physical parameters, T = 0.15, K = 0.0262, L = 0.075,
v = 0.1.

Exercise 2.2: Choose different equilibria point for linearization, compare the
step response of those systems and also with the nonlinear system using the com-
mand open_sim(). Explain the differences in these responses.

Answer:

The next step would be to discretize the model in order to design the controller
in discrete time. The sampling time would highly influence the response of the
system.

Exercise 2.3: (Preparation exercise) Derive the state space equation in dis-
crete time for the system in exercise 2.1. (Hint: Glad-Ljung 4.2)

Answer:

Convert the model to discrete-time sys_d using the command c2d(), try dif-
ferent sampling period, for instance 1s, 0.1s, and 0.03s.

6



3 System analysis

This section is about analyzing properties of the system, namely the stability.
Stability of the system is defined by the location of its poles. In state space
form, the poles appear as the eigenvalues of the state matrix. Use the com-
mand pole() or eig() to see the position of the poles in complex plane.

Exercise 3.1: Where are the poles of the discretized systems located? How does
it correlate to system stability? How does sampling period affect the position of
the poles?

Answer:

4 Closed loop systems

This section deals with the introduction of a controller into the system to make
the closed loop system follow a certain reference value, which is often called
trajectory tracking control. A commonly used PID controller is implemented
here. It consists of three blocks connected in parallel, namely the proportional
block, the integral part, and the derivative block. Each block has a parameter
that can be tuned so that the control performance of the closed-loop system
fulfills the specified criteria.

There are several ways to find the initial parameter values of PID, e.g. Ziegler-
Nichols method, relay method, etc. After initial parameter values have been
found, manual tuning has to be performed on those parameters to obtain the
desired performance of the actual closed-loop system.

The general idea how to tune PID parameters is as follows. To obtain faster
response of the closed-loop system, the proportional gain needs to be increased.
The integral part is used to remove the steady state error. The derivative block
is used to increase or decrease the damping factor, depending on the demanded
response of the system.

Open the file tracker_PID.m to simulate the closed loop system with PID con-

7



troller. Use the command PID_reg(Kp,Ki,Kd,Ts) to build the appropriate
PID controller and use the command closed_loop() to evaluate the closed-
loop system cl_sys. Detail information about this command is available at the
appendix. Run the command lin_close() to run the closed-loop simulation of
trajectory tracking control.

4.1 Proportional control (P-control)

Proportional control produces a control signal proportional to the output error

u(t) = Kpe(t)

where e(t) = r(t) − y(t) and r(t) is the reference signal.

Exercise 4.1: Try to tune the proportional parameter Kp in the PID controller
with Ki = 0 and Kd = 0 such that the closed loop system has good tracking
performance in terms of speed of the convergence speed, i.e. the settling time is
around 5 seconds. How would the value Kp influence response of the system? Is
there any steady state error?

Answer:

Exercise 4.2: Now try the same proportional control on the disturbed system
with a simulated disturbance acting on the vehicle’s torque. Is there any steady
state error?

Answer:

8



4.2 Proportional control with integration (PI-control)

From the previous task, it is known that proportional control could not be
able to remove the steady state error, thus integration is implemented at the
controller to compensate the steady state error as follows

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ

Exercise 4.3: By choosing Kp from previous exercise and Kd = 0, try to tune
the the integral parameter Ki to eliminate the steady state error on the disturbed
system. What is the influence of Ki in the response?

Answer:

4.3 Proportional control with integral and derivative action
(PID-control)

The implementation of integration would pretty much eliminate the steady state
error in the closed loop system. However, this would also lead to an overshoot
in the system response. Hence, to dampen this oscillation, the rate of change
of the control signal could be reduced by letting it be dependent on the rate of
change of the output error

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd

de(t)

dt

9



Exercise 4.4: Use the same value of Kp and Ki from previous exercise, try
to tune the derivative parameter Kd of PID controller to reduce the overshoot
at most 40% of the steady state value. How would Kd influence the closed loop
response?

Answer:

Exercise 4.5: Implement the PID controller with the nonlinear system both
disturbed and undisturbed. Are there any significant differences between the re-
sponses of linearized and nonlinear system?

Answer:

10



Exercise 4.6: Using the same value of Kp, Ki, and Kd, do the simulation of
closed-loop system with different sampling period. Does it have any influence on
the closed-loop response?

Answer:

11



A List of matlab commands

ss(A,B,C,D) creates a continuous system in state space form.

c2d(sys,Ts) converts the continuous system sys into discrete time with sam-
pling time Ts.

step(sys) produces the step response of sys.

open_sim(sys,u,Tend) compare step response of linearized system sys with
the nonlinear system with step size u for simulation period Tend.

eig(A) calculates eigenvalues of A.

pole(sys) calculates the poles of system sys

lsim(sys,u,t) gives the response of sys to the input signal u within the time
vector t.

PID_reg(Kp,Ki,Kd,Ts) evaluates the discrete-time PID controller.

closed_loop(sys,reg) evaluate the closed-loop system from open-loop sys-
tem sys and regulator reg

lin_close(sys_d,reg,Tend,Ts) simulate a step input signal 10cm on linear
system sys_d controlled by PID controller reg for simulation period Tend and
sampling period Ts.

lin_close_dist(sys_d,reg,Tend,Ts) simulate a step input signal 10cm on
linear system sys_d with simulated disturbance controlled by PID controller
reg for simulation period Tend and sampling period Ts.

nonlin_close(reg,Tend,Ts) simulate a step input signal 10cm on nonlinear
system controlled by PID controller reg for simulation period Tend and sam-
pling period Ts.

nonlin_close_dist(reg,Tend,Ts) simulate a step input signal 10cm on non-
linear system with simulated disturbance controlled by PID controller reg for
simulation period Tend and sampling period Ts.

12


