
Introduction to computer based control systems

Process lab 1

Name:
Program:
Date:
Approved: Sign

UPPSALA UNIVERSITY

DEPARTMENT OF SYSTEM AND CONTROL

1

1 Introduction

There will be three process labs. The goal of the labs is to construct a robotic
line tracker that will be able to keep the vehicle at the center of a gradient track
in a satisfactory manner.

In this session you will familiarize yourself with the equipment that will be used
for the two upcoming labs. First of all, you will build the vehicle that in the
end will be able to stay at the center of the track. The next step is to make the
vehicle move and to take readings from its sensors. Finally, you will design a
control algorithm enabling the vehicle to follow the track.

1.1 Hardware: LEGO NXT

The hardware that will be used is the LEGO NXT. It consists of a NXT-
brick which is the brain of the system. There are several sensors and actuators
available. The actuators that will be used in this laboration are the DC motors
and the sensor that will be used is the light sensor. On the top of the NXT brick
there are 3 motor ports A,B and C to which the motors could be connected.
On the bottom of the NXT, there are four sensor ports 1, 2, 3 and 4 to which
the sensors can be connected. The NXT brick is switched on by pushing the
orange square button on the front; to switch it o� push the gray button below
the orange button and then the orange button.

1.2 Software: RWTH toolbox

RWTH toolbox will be used to �program� the brick. It works so that all the
computations are performed on a PC in Matlab and then control signals and
sensor readings are communicated between the NXT and the PC via a USB
cable. This makes it easy to program and to visualize the data by using Matlab's
graphics functions. It is, in principle, possible to use the bluetooth connection
for the communication, but it has a delay of about 60 ms which will have negative
e�ects on the achievable control performance.

2 Building the vehicle

The �rst task is to build the vehicle for the tracker. The vehicle will be a
three-wheeled car with a light sensor at the front. There will be two driving
wheels, each one attached to a DC motor, while the third wheel is only used as
a support wheel.

2

Task: Build the vehicle by following the building instructions that are pro-
vided in the building manual found in the Lego box. When you are done contact
the lab assistant to check your design.

3 Preparation

• Open Matlab and get to the lab directory (it will be speci�ed at the lab
session).

• Type addLabPath in Matlabs command prompt and hit enter to get
access to all required functions and m-�les. Note that you should stay in
this directory during the whole lab!

• Connect the NXT and PC with the USB cable.

• Turn the NXT on by pushing the orange button.

• Type h=init(); in Matlabs command prompt and hit enter. If you receive
no error messages everything is working correctly and you have managed
to establish a connection to the NXT.

• Type closeConnection(h); in Matlabs command prompt and hit enter
to close the connection to the NXT.

4 Actuators

In a system, an actuator is a device that is able to actuate a control signal. In
the vehicle, the actuators will be the two DC motors that can move the system
provided input voltages are applied to them. This can be done by calling the
function applyMotorVoltage (see Appendix). Note that this function takes
as input the percentage of the maximum voltage to be applied to the motor.

Task: Use the m-�le actuatorTest.m as a start, open it by typing open
actuatorTest in Matlab's command prompt. Make sure that the right and left
motor are connected to the corresponding ports. Fill in the missing commands
to make an m-�le that:

• Establishes a connection to the NXT.

• Applies a voltage of 50 % of the maximum available voltage on both left
and right motor.

• Run for 3 seconds.

• Stops, i.e. applies 0 % voltage to both motors.

• Closes the connection to the NXT.

3

Question: Even with the same voltage applied to both motors, the vehicle is
not running straight. Give suggestions to why this might be the case.'

&

$

%
From now on, the vehicle will be controlled by applying an o�set voltage u0

to both motors causing the vehicle to go forward at constant speed, and the
steering will be performed by applying a di�erential voltage ∆u to the motors.
If ul and ur is the voltage applied to the left and right motor they will be given

ul = u0 + ∆u/2

ur = u0 −∆u/2

The function applyDeltaVoltage (see Appendix) should be used to apply
these voltages to the motors.

Task: Rewrite actuatorTest.m using the function applyDeltaVoltage when
applying the motor voltages. Try out di�erent values of ∆u, u0 and observe the
behavior.

5 Sensor

Some kind of input is required to know where on the track the robot is. The
sensor that will be used to measure the distance to the center of the track is
a light sensor. It is able to measure the light intensity it is receiving. As you
can see, the track consists of a gradient line. Since bright colors re�ect more
light than dark colors, it will be possible to determine the vehicle position on
the track by measuring the light intensity registered by the sensor.

The sensor can (and should) be run in active mode. It will then emit light
through a LED (light emitting diode) and make the sensor reading less sensitive
to ambient light. By calling init, the light sensor will automatically be set in
active mode provided that it is connected to sensor port 1.

4

5.1 Reading the sensor

To read a value from the sensor, use the GetLight command (see Appendix).

Task : Use sensorTest.m as a start (open this by typing open sensorTest
in Matlabs command prompt) and �ll in the missing commands to produce an
m-�le that does the following:

• Initializes a connection to the NXT

• Reads the light intensity value and prints it in Matlabs command prompt.

• Closes the connection to the NXT.

5.2 Calibrating the sensor

The light sensor measures the received light intensity. What we actually want
to know is the distance to the center of the track. This means that a calibration
is required to transfrom the light intensity to a distance. When the sensor is
within the track, the received light intensity l depends linearly on the distance
y from the center of the track, i.e. l = a1y + a0. To calibrate the sensor, the
parameters a0 and a1 have to determined.

Task: Calibrate the sensor by the following steps:

• Use a ruler and a pencil to mark the points y = {−10,−5, 0, 5, 10} mm on
the track, ask the lab assistant how this should be done.

• Run the function [y, l] = calibrateLS(y), see Appendix. As input, give a
vector of the measurement points in m i.e. y = 10−3[−10,−5, 0, 5, 10]. As
output you will receive the y vector together with a vector containing the
corresponding light intensity values l. It will ask you to put the middle of
the sensor at the given points y = {−10,−5, 0, 5, 10}mm and press enter
for each reading. Make sure that the center of the sensor is located at the
given position when the measurement is taken.

• Make a plot of y versus l, i.e. plot(y,l).

• Now determine the parameters a0 and a1 by �tting a line using the least
squares method. Matlabs poly�t function should be used here, type help
poly�t in Matlabs command prompt for help. Write down these values for
later use.

• Plot the measured data points together with the �tted line by calling the
plotCalCurve (see Appendix) function to make sure your calibration is
valid. Show the calibrated curve to the lab assistant.

5

Question: Does it seem to be a linear relationship between the light intensity
and the distance from center of the track?�
�

�

Question: What will the formula to convert a light intensity value to a dis-
tance to the center of track be?�

�

�

�
Question: What will happen if the sensor comes too close to the edge of the
track, will there still be a linear relationship between l and y? Sketch the light
intensity curve in the plot below assuming that the track is 5 cm wide and that
the maximum received intensity is 1 when the sensor is reading all white and 0
when reading all black.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d [cm]

lig
ht

 in
te

ns
ity

6 Control

You now know how to control the motors and read the light sensor. To make a
line tracker, the system will be set up so that the left and right motor are given
an equal o�set voltage u0 causing the vehicle to move forward at a constant
speed and the steering will be performed by applying a di�erential voltage ∆u

6

to the motors. The voltages applied to the left and right motor ul and ur are
given by

ul = u0 + ∆u/2

ur = u0 −∆u/2

The system thus has one input signal ∆u and one output signal y.

A control law is an function (or algorithm) that takes the sensor measurements
as input and from these values calculates a control signal to the system that
should give the desired behavior.

Task: The m-�le lineTracker.m can be used as a start for this task. Open it
by typing open lineTracker in Matlabs command prompt.

Your task is to make a simple control law that takes as input the distance from
center of the track y and produces a di�erential voltage ∆u that is applied to
the motors. The function applyDeltaVoltage should be used to apply the
input signal ∆u, see Appendix. Use the o�set voltage u0 = 30 as input to
applyDelta Voltage.

The code implementing such a control law should include the following steps:

• Initialize a connection to the NXT.

• Do for 100 iterations (Control loop)

� Read the light sensor.

� Convert the read intensity to a distance from the center of the track.

� Calculate a control signal ∆u according to your control law.

� Apply the calculated control signal to the motors.

• Stop the motors.

• Close the connection to the NXT.

Fill in the missing commands and execute the code to see whether the vehicle
is able to stay on track using your control law.

Note: It is likely that there will be some failures along the way of �nding
a control law that stabilizes the vehicle on the track, causing the vehicle to
spin and twist the usb cable. In that case, disconnect the usb cable when the
program is �nished executing unwind the cable and reconnect it.

When you have a solution that is able to keep the vehicle on track you are done
with the lab.

7

7 Appendix

8

11/3/10 1:55 PM Y:\regsysintro\CourseMaterial\Labs\C...\AppendixDocumentation.m 1 of 3

% ***

%

% function applyMotorVoltage(MOTOR_L, u_l, MOTOR_R, u_r)

%

% Input

% MOTOR_L: Port for left motor (MOTOR_{A,B,C})

% MOTOR_R: Port for right motor (MOTOR_{A,B,C})

% u_left : Percentage of maximum voltage to apply to left motor

% u_right: Percentage of maximum voltage to apply to right motor

%

% Applies u_left*U_MAX and u_right*U_MAX volts to left respectively right

% motor

% ***

%

% function plotCalCurve(y_points, l_points, a0, a1)

%

% INPUT

% y_points: Vector containing the measurement points in m

% l_points: Vector whe element i is the light value read at position y(i)

% a0: Offset parameter

% a1: Slope parameter

%

% Plots the measurement points (y(i), l(i)) i=1..length(y) together with

% the fitted curve y=a1*l + a0.

% ***

% function applyDeltaVoltage(u0, delta_u, MOTOR_L, MOTOR_R)

%

% INPUT:

% u0 : Offset voltage in percent of max voltage

% delta_u : Differential voltage in percent of max voltage

% MOTOR_L : Port for left Motor (MOTOR_{A,B,C})

% MOTOR_R : Port for right Motor (MOTOR_{A,B,C})

%

%

% Applies (u0 + delta_u/2)*U_MAX and (u0 - delta_u/2)*U_MAX volts to

% MOTOR_L respectively MOTOR_R.

%

% ***

% function closeConnection(h)

%

% Input:

% h: A hande to the NXT for which the connection should be closed.

%

% Stops the motors, turns of the light sensor and closes the connection to

% the NXT associated with the handle h.

%

% ***

% function applyMotorVoltage(MOTOR_L, u_l, MOTOR_R, u_r)

11/3/10 1:55 PM Y:\regsysintro\CourseMaterial\Labs\C...\AppendixDocumentation.m 2 of 3

%

% Input

% MOTOR_L: Port for left motor (MOTOR_{A,B,C})

% MOTOR_R: Port for right motor (MOTOR_{A,B,C})

% u_left : Percentage of maximum voltage to apply to left motor

% u_right: Percentage of maximum voltage to apply to right motor

%

% Applies u_left*U_MAX and u_right*U_MAX volts to left respectively right

% motor

% ***

%

% function [y, l] = calibrateLS(y)

%

% INPUT:

% y: A vector specifying the callibration points in m

%

% OUTPUT:

% y: A vector specifying the callibration points in m

% l: A vector containing the light intensity at the corresponding y

% points.

%

% Asks the user to place the sensor at d(i) mm from the center of the

% track, i=1,..lenght(d) and press enter at each point to take a

% corresponding light intensity reading y(i).

%

% ***

% function h = init()

%

% OUTPUT

% h: A handle to the NXT brick connected to the usb cable

%

% Closes all current connections to the NXT and opens a new connection.

% Make sure that the NXT is powered on and connected to the USB cable when

% calling this function.

% ***

% Reads the current value of the NXT light sensor

%

% Syntax

% light = GetLight(port)

%

% light = GetLight(port, handle)

%

% Description

% light = GetLight(port) returns the current light value light of the

% NXT light sensor. The measurement value light represents the

% normalized (default) sound value (0..1023 / 10 Bit). The normalized

% value mode is set per default by the function OpenLight. The given

% port number specifies the connection port. The value port can be

11/3/10 1:55 PM Y:\regsysintro\CourseMaterial\Labs\C...\AppendixDocumentation.m 3 of 3

% addressed by the symbolic constants SENSOR_1 , SENSOR_2, SENSOR_3 and

% SENSOR_4 analog to the labeling on the NXT Brick.

%

% The last optional argument can be a valid NXT handle. If none is

% specified, the default handle will be used (call COM_SetDefaultNXT to

% set one).

%

% For more complex settings the function NXT_GetInputValues can be

% used.

