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1 Introduction

In this lab session you will �rst derive a mathematical model for the system, a
robotic car, from the laws of mechanics. This is largely the same derivation as
given in Computer Lab 1, but here the result is given as a transfer function
instead of the state space formulation. The model will contain parameters
that will determined experimentally by using system identi�cation techniques.
Finally you will tune and implement a PID controller that will be able to keep
the vehicle on track.

2 Modeling of the system

Center of track

Sensor

Brick

ϕ

R

r

f r

f l

T

L

y

Figure 1: Robot viewed from above.

Table 1: List of variables
Variable Description Unit
T Torque Nm
R Wheel axis radius m
φ Angle to track rad
fr,l Force on left and right wheel N
τr,l Torque on left and right wheel N ·m
θr,l Rotation angle of left and right wheel rad
I Moment of inertia for robot around the center of rotation kg ·m2

L Distnace from center of rotation to light sensor m
y Distance from center of track m
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Mechanical modeling of the car

The vehicle will be given a constant forward speed v and its direction of travel
will be controlled by a feedback. An equal o�set voltage u0 is applied to both
motors yielding the forward velocity v, and steering is performed by a di�erential
voltage ∆u. Denoting the voltage given to the left and right motor ul and ur
respectively, this can be expressed as

ul = u0 + ∆u/2

ur = u0 −∆u/2

The aim is to keep the vehicle (or actually the position sensor) at the center of
the track. The output of the system is thus the distance from the sensor to the
center of the track y, and the input signal is the di�erential voltage ∆u applied
to the motors. In the controller program, ∆u will be expressed as a percentage
of the maximum voltage and this input will be denoted u(t). A model that gives
the relationship between the distance to the center of track y and the percentage
of the di�erential voltage u is thus sought in the form of transfer function G(s)

Y (s) = G(s)U(s).

The movement of the robot can be decomposed into a translational movement
and a rotational movement.

Translational movement
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Figure 2: Translational part y1 and rotational part y2 of the total distance to
the center of track y

The translational movement in question occurs in the direction perpendicular
to the track that the vehicle is traveling along. This is described by the two
distances y1 and y2, as shown in Fig. 2. The distance y2 is the integrated
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velocity component perpendicular to the track while y2 is the distance com-
ponent perpendicular to the track due to the sensor rotation by the angle φ.
Mathematically this can be expressed as:

y(t) = y1(t) + y2(t)

y1(t) =

t̂

0

v · sin(φ(τ))dτ

y2(t) = L · sin(φ(t))

For small values of φ, sin(·) can be replaced by the angle itself, i.e. sin(φ) ≈ φ
which gives

y(t) = y1(t) + y2(t) ≈ Lφ(t) + v

t̂

0

φ(τ)dτ (1)

The translational velocity of the vehicle is proportional to the o�set voltage u0

v = Kuuo

Note that the �constant� Ku depends on the o�set voltage Ku = Ku(u0), e.g.
a doubling of u0 will not double v. However for a constant u0 this Ku can be
regarded as a constant.

Laplace transformation of Eq. 1 gives

Y (s) = (L+
v

s
)Φ(s)

The transfer function from φ(t) to the distance to the center of the track is thus
given by

GT (s) = L+
v

s
= L+

Ku

s
u0

Rotational movement

The laws of mechanics give the following relations
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T = Iφ̈ (2)

T = (fl − fl)R (3)

fr,l =
τr,l

r
(4)

φ = r
θl − θr

2R
(5)

Combining Eq. 2-4 together gives

(τl − τr)
R

r
= Iφ̈ (6)

This relates the torque exerted by the left and right wheel to the turning angle
φ. Since the input is the voltage to the left and right motor, a DC motor model
that describes the relation between the input voltage and the output torque is
needed. The total torque τtot that the motor will exert is proportional to the
input voltage, i.e. (τtot)r,l = Kτur,l. To produce an angular acceleration of the
wheel requires a torque of τw = Iwθ̈. Furthermore, there is a torque required to
compensate for the friction and back emf of the motor that is proportional to
the angular velocity of the wheel τf = Kbθ̇. The remainder of the torque τl will
act on the load, i.e. move the vehicle. This gives the relationship (dropping the
indexes l and r for left and right motors)

τtot = τw + τf + τl ⇔
τl = τtot − τf − τw

= Kτu− Iwθ̈ −Kbθ̇ (7)

Now, inserting Eq. 7 into Eq. 6 yields

rI

R
φ̈ = Kτ (ul − ur)−Kb(θ̇l − θ̇r)− Iw(θ̈l − θ̈r)

Using Eq. 5, this can be written as

rI

R
φ̈ = Kτ∆u− 2R

r
Kbφ̇−

2R

r
Iwφ̈⇐⇒

(
rI

R
+

2R

r
Iw)φ̈ = −2R

r
Kbφ̇+Kτ∆u (8)

where ∆u = ul − r. This second order di�erential equation gives the dynamic
relationship between the input ∆u and the output φ. Since u(t) = K∆∆u(t) for

5



some constant K∆, the transfer function from u to the angle φ is thus given by
Laplace transform of Eq. 8 which gives

Φ(s) =
K

s(Ts+ 1)
U(s)

where

K =
K∆Kτr

2RKb

T =
1

Kb
(
r2I

2R2
+ Iw)

The transfer function from u to φ is thus

GR(s) =
K

s(Ts+ 1)

The transfer function for the whole system

The transfer function for the whole system is given by GR(s) in series with
GT (s) as shown in Fig. 3.

TG (s)
RG (s)

ϕu y

Figure 3: Block diagram for the system.

G(s) = GR(s)GT (s) = K
Ls+ v

s2(Ts+ 1)

3 Parameter identi�cation

The transfer function G(s) has the parameters K, T , v, and L that have to be
determined. This can be done using system identi�cation techniques. Note that
these are the same parameters that are used in the state space formulation in
Computer Lab 1.
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3.1 Identifying GT (s)

First of all: Open Matlab, get to the lab directory, type addLabPath to get
access to all required m-�les.

Task: Determine the parameters v and L of GT (s):

• Use a ruler to determine the distance from the center of rotation to the
middle of the sensor L.

• Open actuatorTest.m by typing open actuatorTest in Matlabs com-
mand prompt. Make the vehicle run forward for 3 seconds by applying
40% of the maximum voltage to the motors. Measure the distance that
the vehicle has moved during the 3 seconds and determine v from this
experiment.

What values of L and v have you obtained?�

�

�

�
3.2 Identifying GR(s)

The transfer function from u to φ is GR(s). This is a second order transfer
function. The transfer function from u to φ̇ is given by sGR(s) = K

Ts+1 which
is a �rst order transfer function but with the same parameters K and T . The
system response to a step of u = 60% will have the signal shape similar to that
in Fig. 4. It can be seen that the values K and T can be estimated from the
step response since y(T ) = 0.63 · 60K and 60K is the static gain of the step.
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Figure 4: Output signal y(t) when the input signal ∆u(t) is a unit step

Task: Run the m-�le identi�cation.m by typing identi�cation in Matlabs
command prompt and hit enter. This m-�le will apply a step of u = 60% and
measure the angular velocity φ̇ and then plot the step response. Study the
obtained plot and determine the parameters K and T .

Question What values of K and T have you obtained?�

�

�

�
You have now identi�ed the system and the obtained model can be used to
construct a model-based controller. This will be done in the Lab 3. In this
lab however you will continue with designing a PID regulator, which can be
implemented without a model.

4 PID control

You will now implement a PID controller to control the vehicle. You will here see
the practical behavior of the PID that were studied in simulation in Computer
Lab 1. The PID controller is by far the most used controller in the industry
because of its simplicity and capability of achieving good control performance
without having a detailed model of the system.
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The PID controller consists of three parts: the proportional part (P), the inte-
grating part (I), and the di�erentiating part (D). You will �rst implement only
the proportional part and then add the integrating and di�erentiating parts.
The PID controller will be implemented in state space form and is readily pro-
vided in the �le lineTrackerPID.m that you will use for the implementation
of the controller.

First the light sensor must be calibrated, in the same way as in Lab 1. i.e.

• Call [y l] = calibrateLS(y), with the input y = 10−3[−10,−5, 0, 5, 10]

• Place the sensor at the speci�ed values of y and hit enter.

• Determine a0 and a1 by calling polyfit(y, l, 1)

• Check your result using plotCalCurve() function

4.1 Proportional control (P-control)

P-control uses the control law

u(t) = KP e(t)

where u(t) is the output signal of the controller and e(t) = r(t) − y(t) is the
control error with respect to the reference signal r(t). In this application the
reference signal is zero, r(t) = 0 , since the vehicle should be kept at the center
of the track) which thus gives e(t) = −y(t).

Task: Use the m-�le lineTrackerPID.m. Open it by typing open line-
TrackerPID in Matlabs command prompt. Implement a proportional con-
troller and try out some values of KP to see the system behavior. To disable
the integrating and di�erentiating parts, let KI = 0 and KD = 0.

Question: How does the value of KP a�ect the behavior of the controlled
system?�

�

�

�
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Question: How does the value of KP a�ect the magnitude of the input signal
|u(t)|?�

�

�

�
Task: Make the vehicle run on the track. Does the output y seems to be
centered?�

�

�

�
4.2 Proportional control with integration (PI-control)

When using only P-control, there is thus a possibility of a static error, i.e.
lim
t→∞

e(t) 6= 0. To eliminate the static error, an integrating part is usually added

to the controller, yielding the control law

u(t) = KP e(t) +KI

t́

0

e(τ)dτ.

This control law will increase the magnitude of the control signal as long as
e(t) 6= 0 forcing it to eliminate static error. However, when the e(t) = 0,
the integrated error will not be zero which will cause the vehicle to somewhat
overshoot the center of the track. Introducing the integration thus eliminates
the static error but makes the system more oscillatory.

Task: Use the m-�le lineTrackerPID.m. Open it by typing open lineTrackerPID

in Matlab's command prompt. Implement a PI controller and try out some val-
ues of KP and KI to see the system behavior. Use KD = 0 to disable the
di�erentiating part.

Task: Run the vehicle on the track, is there still a static error?�

�

�

�
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4.3 Proportional control with integration and di�erentia-
tion (PID control)

To dampen the oscillations in the closed-loop system, a di�erentiating part can
be added to the control law, i.e.

u(t) = KP e(t) +KI

t́

0

e(τ)dτ +KD
de(t)
dt

Assume that e(t) > 0. Turning away from the center of the track results in
de(t)
dt > 0. This will increase the control signal and make the vehicle to turn

back on track faster. When the vehicle start to turn towards the track, the
sign of the derivative will change de(t)

dt < 0 and the control signal will decrease,
resulting in a smaller overshoot. The di�erentiating part will thus make the
control more damped but also slower.

Note: There is not a good idea to use pure di�erentiation of the error signal
since it is often corrupted by high frequency noise. Di�erentiating a noisy signal
will enhance the noise and the system will get a jerky behavior. To remedy this
problem, the signal e(t) is typically low-pass �ltered before di�erentiating it.
This is taken care of in the function pid.

Task: Implement a PID controller using lineTracker.m and try out some
values of KD to see the system behavior.

4.4 Tuning a PID

It can be di�cult to get good performance when tuning a PID manually as
you did in the previous tasks. There are many tuning algorithms based on
experimental data available for the PID controller, providing feasible values for
the parameters KP KI and KD. You will here use a method called relay tuning.
Relay tuning is not part of this course but the interested reader can �nd more
about it in e.g. Åström & Hägglund 1994. Here you will only follow the given
�recipe� for the tuning procedure.

The experiment for relay tuning is to use a relay with amplitude h as control
law, i.e.

u(t) =

{
h if y(t) ≥ 0

−h if y(t) < 0

The system is then regulated with this control law which will cause it to oscillate
with a certain frequency ω0 and amplitude C. The obtained values of ω0 and
C give information used to specify the parameters for the PID controller.
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Task:

• Put the vehicle on the straight part of the track.

• Call the function relayTuning(a0,a1) by typing relayTuning(a0,a1)

in Matlab's command prompt and hit enter, where a0 and a1is the light
sensor calibration parameters. This m-�le will run the system with the
relay control, where the relay has an amplitude of h = 30% of the max
voltage, and also plot the result of the execution.

• Study the obtained plot and determine the frequency ω0 and the amplitude
C of the oscillation.

• Use the function [Kp, Ki, Kd] = pidRelayParam(w_0,C) to get the val-
ues for the PID parameters.

• Use the obtained parameters in lineTrackerPID.m and run the code to
see the regulation of the system with these parameters.

Techniques for auto tuning of PID regulators are far from �fool proof�, but they
give a good initial guess of the parameters. Manual adjustments of the obtained
parameters are therefore often performed afterward.

Task: Try to manually tune the parameters KP KI and KD based on your
knowledge about how the parameters will e�ect the behavior of the regulated
system. Demonstrate your line tracker for the lab assistant when you have come
up with a result that you are satis�ed with.
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