
Introduction to
computer-controlled systems,

5 credits, 1RT485

Date and Time: 2011-08-16, 14-19

Place: Polacksbacken, Exam hall

Teacher on duty: Alexander Medvedev, tel. 3064.
Alexander will come to the exam hall to answer questions around 15.00.
Allowed aid: Course textbook (Glad, Ljung), calculator, copies of slides from
the course, own notes from the course (in original or copy), mathematical hand-
book (Beta or similar).

Preliminary grade bounds: 3:[15, 20[, 4:[20, 25[, 5:[25, 30 = max]

NB: Please only one problem per sheet. Write your anonymous
exam code on each sheet. Write your name if you do not have an anonymous
code.

Solutions have to be explained in detail and well-argumented.

GOOD LUCK!



1 Problems

1.1 Lab problem

a) (2 points)
The dynamics for the line tracking vehicle that was used in the process labs
are given by a set of nonlinear equations. After simplification and linearization,
they are defined as follows

φ̈(t) = − 1

T
φ̇(t) +

K

T
u(t) (1)

y(t) = Lφ(t) + v

t̂

0

φ(τ)dτ (2)

where φ is the angular deviation from the track direction, u is the control signal,
y is the measured position on the track and T , K, L are known constants.
Provide the state space description of the system with input u and output y
using the states

x1(t) =
t́

0

φ(τ)dτ, x2(t) = φ(t), x3(t) = φ̇(t)

b) (2 points)
Calculate the controllability matrix for the state space model found in a). Is
the system controllable?

c) (2 points)
The transfer function for the system is given by

G(s) =
K

s2(Ts+ 1)

In time domain the PID regulator is given by

u(t) = Kpe(t) +KI

t̂

0

e(τ)dτ +KD
de(t)

dt

The closed loop system with reference r is shown in Fig. 1. Evaluate the transfer
function for the closed loop system Gc(s), i.e. the transfer function from r to y.
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Figure 1: Closed loop system with regulator F (s).

1.2 Multiple choice problem

This problem comprises six statements that can be agreed or disagreed with by
answering yes or no. Each correct answer gives 0.5 points. A reasonable motiva-
tion to a correct answer adds 0.5 points. In total, provided all the questions are
answered correctly and the answers are well motivated, this problem is worth 6
points.

1. The output of the discrete system given by the transfer function

W (z) = z−3

can be unbounded for a bounded input signal.

2. The first-order differential equation

ẋ = x2, x(0) 6= 0

has only unstable (diverging) solutions.

3. Same nonlinear system can exhibit both stable and unstable solutions,
depending on the initial conditions.

4. The continuous dynamic system with a time delay described by the trans-
fer function

W (s) =
e−s

s+ 1

has unit static gain.

5. Analog filtering of measurements and control signals is necessary in dis-
crete control of analog plants.

6. A sine-wave of a curtain frequency applied as input to a nonlinear system
produces a sine-wave response of the same frequency at the system output.
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1.3 Problem A

Consider a nonlinear height tank, where the flow F (t) is the input and the level
h(t) is the output. The system dynamics are described by

dh(t)

dt
=

F (t)

A
− β

A

√
h(t)

β and A are parameters: β = 1 m2.5/min and A = 0.5 m2.

a) (2 points)
Obtain the equilibrium point of the system for the input flow F (t) = 2 m3/min.

b) (2 points)
Obtain a linear state space representation of the system by linearization at the
equilibrium point computed in the previous item with B as a unit matrix (i.e.
B = I).

ẋ = Ax+Bu

y = Cx+Du

c) (2 points)
Obtain the impulse response, y(t) (for t > 0), of the linearised continuous system
obtained in the previous item, if a Dirac delta function is applied at the input
u at t0 = 0 and the initial condition is x(0)=0.1.
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1.4 Problem B

Consider the continuous-time linear system given by

ẋ =

(
−3 −2
1 0

)
x+

(
1
0

)
u

y = (0 0.5)x

a) (2 points)
Obtain the transfer function of the system.

b) (2 points)
Design a PID controller that yields the characteristic polynomial of the closed-
loop system as Θ(s) = s3 + 4s2 + 6s + 4. Obtain the values kP1, kI1 and
kD1.

H1(s) = kP1 +
kI1
s

+ kD1s

c) (2 points)
Now consider another controller where only the proportional part is used with
its proportional gain value is taken from b)

H2(s) = kP2 = kP1.

How does the steady state error of the closed-loop system change when this
controller is used? Give motivation by comparing it with the PID controller
from b).
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1.5 Problem C

Consider a continuous-time linear system given by

ẋ =

(
−2 1
0 −1

)
x+

(
0
1

)
u = Ax+Bu

y = (1 0)x = Cx.

a) (2 points)
Evaluate the transition matrix of the system, Φ(t) = exp(At)

b) (1 point) Is the continuous system controllable and observable? Motivate
your answers with computations.

c) (2 points)
Sample the system with a sampling time T , and analyse observability of the
sampled system. Is there a value of T that makes the sampled system unob-
servable?

d) (1 points)
For the sampled system, what eigenvalues would be suitable to assign to the
matrix exp(AT )−LC by the observer gain L so that the estimation error of the
observer

x̂(t+ 1) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t))

asymptotically converges to zero?
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2 Solutions

2.1 Lab problem

a) The relation  ẋ1
ẋ2
ẋ3

 =

 φ

φ̇

φ̈

 =

 x2
x3

− 1
T x3 + K

T u


gives the state space description

 ẋ1
ẋ2
ẋ3

 =

 0 1 0
0 0 1
0 0 − 1

T

 x1
x2
x3

+

 0
0
K
T

u
y =

[
v L 0

]  x1
x2
x3


b) The controllability matrix is given by

S =
[
B AB A2B

]
=

 0 0 K
T

0 K
T − K

T 2

K
T − K

T 2
K
T 3


clearly we have rank(S) = 3 (i.e. full rank) and hence a controllable system.

c) The transfer function of PID regulator F (s) could be derived by taking
Laplace transform of the time domain expression under the assumption of zero
initial conditions:

U(s) = KPE(s) +
KI

s
E(s) +KDE(s)s

F (s) =
U(s)

E(s)

=
KDs

2 +KP s+KI

s

From the block diagram, the relation in Laplace domain between reference signal
R(s) and output signal Y (s) is given by

(1 +G(s)F (s))Y (s) = G(s)F (s)R(s)
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The closed loop system Gc(s) is then defined as

Gc(s) =
Y (s)

R(s)

=
G(s)F (s)

1 +G(s)F (s)

=
K(KDs

2 +KP s+KI)

s3(Ts+ 1) +K(KDs2 +KP s+KI)

2.2 Multiple choice problem

1. No. The system is just a time delay for three steps. The output has
exactly the same signal form as the input but with a time shift. Therefore,
a bounded input yields a bounded output.

2. Yes. At any time, the velocity of x is positive which means that the
variable can only increase.

3. Yes. Specific solutions of a nonlinear system are analyzed for stability.
They might be stable or unstable, depending on where they originate
from.

4. Yes. W (s)|s=0 = 1.

5. Yes. Analog filtering is typically used both at the input and at the output
of a discrete controller. Filtering of the input is essential for anti-aliasing,
filtering of the output does not let high-frequency content of rectangular
control signal shape influence the dynamics of the plant.

6. No, nonlinear systems do not generally preserve the frequency of the input
signal in the response. For instance, the static system y = u2 doubles the
frequency.
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2.3 Problem A

a) Given the equations of the system

dh(t)

dt
=

F (t)

A
− β

A

√
h(t)

From (1), by replacing F (0) = F0 = 2 and dh(t)
dt = 0, the equilibrium point for

the tank level is
h(0) = h0 = 4 m

b) Using Taylor series (until order 1) around the equilibrium point (fi,0 and
h0), and assuming u(t) = F (t)−F0 and x(t) = h(t)− h0, the linear space-state
representation at the equilibrium point is given by

ẋ =

[
(
β

A
)(−0.5h

−1/2
0 )

]
x+ [1]u

y =

[
1

A

]
x

By replacing the constant values, the linear space-state representation at the
equilibrium point is given by

ẋ = [−0.5]x+ [1]u

y = [2]x

c) The output response, y(t) (for t > 0) is computed as follows

y(t) = x(t)

y(t) = CeA(t−t0)x(t0) +

ˆ t

t0

CeA(τ−t0)Bu(τ)dτ

y(t) = 0.2e−0.5t + 2e−0.5t

y(t) = 2.2e−0.5t for t > 0
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2.4 Problem B

a) The transfer function of the system is given by

G(s) = C(sI −A)−1B +D

G(s) =
0.5

s2 + 3s+ 2

b) The characteristic polynomial is given by Θ(s) = s3 + 4s2 + 6s + 4. The
closed-loop transfer function is given by

GCL1(s) =
G(s)H1(s)

1 +G(s)H1(s)

GCL1(s) =
0.5kD1s

2 + 0.5kP1s+ 0.5kI1
s3 + (3 + 0.5kD1)s2 + (2 + 0.5kP1)s+ 0.5kI1

Matching the coefficients of both polynomials, we have kP1 = 8, kI1 = 8 and
kD1 = 2.

c) The closed-loop transfer function using a P controller is given by

GCL2(s) =
G(s)kP2

1 +G(s)kP2

=
0.5kP2

s2 + 3s+ 2 + 0.5kP2

It is clear that in this case the steady-state error is different to zero, because
the integral action is missing. Thus, GCL1(0) = 1 and GCL2(0) 6= 1.
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2.5 Problem C

a) The transition matrix for is

exp(At) =

(
e−2t e−t − e−2t

0 e−t

)

b) The observability matrix of the continuous system is(
C
CA

)
=

(
−1 0
−2 1

)
.

It is non-singular and the system is observable. The controllability matrix of the
continuous system is also non-singular which property guarantees controllability
of the system:

(
B AB

)
=

(
0 1
1 −1

)
.

c) The observability matrix of the sampled system is(
C

C exp(AT )

)
=

(
−1 0
e−2T e−T (1− e−T )

)
.

It is non-singular whenever e−T (1− e−T ) 6= 0 which applies for any T 6= 0.

d) The matrix exp(AT ) − CL is the system matrix of the state estimation
error equation of the observer for the sampled system

e(t+ 1) = (exp(AT )− CL)e(t)

and has to have all its eigenvalues within unit circle to yield a converging state
estimation error.
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